|  Help  |  About  |  Contact Us

Publication : Low vitamin C and increased oxidative stress and cell death in mice that lack the sodium-dependent vitamin C transporter SVCT2.

First Author  Harrison FE Year  2010
Journal  Free Radic Biol Med Volume  49
Issue  5 Pages  821-9
PubMed ID  20541602 Mgi Jnum  J:162645
Mgi Id  MGI:4819450 Doi  10.1016/j.freeradbiomed.2010.06.008
Citation  Harrison FE, et al. (2010) Low vitamin C and increased oxidative stress and cell death in mice that lack the sodium-dependent vitamin C transporter SVCT2. Free Radic Biol Med 49(5):821-9
abstractText  The sodium-dependent vitamin C transporter (SVCT2) is responsible for the transport of vitamin C into cells in multiple organs, from either the blood or the cerebrospinal fluid. Mice null for SVCT2 (SVCT2(-/-)) do not survive past birth but the cause of death has not yet been ascertained. After mating of SVCT2(+/-) males and SVCT2(+/-) females, fewer SVCT2(-/-) and SVCT2(+/-) progeny were observed than would be expected according to Mendelian ratios. Vitamin C levels in SVCT2(-/-), SVCT2(+/-), and SVCT2(+/+) were genotype-dependent. SVCT2(-/-) fetuses had significantly lower vitamin C levels than littermates in placenta, cortex, and lung, but not in liver (the site of vitamin C synthesis). Low vitamin C levels in placenta and cortex were associated with elevations in several markers of oxidative stress: malondialdehyde, isoketals, F(2)-isoprostanes, and F(4)-neuroprostanes. Oxidative stress was not elevated in fetal SVCT2(-/-) lung tissue despite low vitamin C levels. In addition to the expected severe hemorrhage in cortex, we also found hemorrhage in the brain stem, which was accompanied by cell loss. We found evidence of increased apoptosis in SVCT2(-/-) mice and disruption of the basement membrane in fetal brain. Together these data show that SVCT2 is critical for maintaining vitamin C levels in fetal and placental tissues and that the lack of SVCT2, and the resulting low vitamin C levels, results in fetal death and, in SVCT2(-/-) mice that survive the gestation period, in oxidative stress and cell death.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression