|  Help  |  About  |  Contact Us

Publication : Abnormal bone quality in cartilage oligomeric matrix protein and matrilin 3 double-deficient mice caused by increased tissue inhibitor of metalloproteinases 3 deposition and delayed aggrecan degradation.

First Author  Groma G Year  2012
Journal  Arthritis Rheum Volume  64
Issue  8 Pages  2644-54
PubMed ID  22378539 Mgi Jnum  J:233278
Mgi Id  MGI:5781074 Doi  10.1002/art.34435
Citation  Groma G, et al. (2012) Abnormal bone quality in cartilage oligomeric matrix protein and matrilin 3 double-deficient mice caused by increased tissue inhibitor of metalloproteinases 3 deposition and delayed aggrecan degradation. Arthritis Rheum 64(8):2644-54
abstractText  OBJECTIVE: Cartilage oligomeric matrix protein (COMP) and matrilin 3 are extracellular matrix proteins that are abundant in cartilage. As adaptor molecules, both proteins bridge and stabilize macromolecular networks consisting of fibrillar collagens and proteoglycans. Mutations in the genes coding for COMP and matrilin 3 have been linked to human chondrodysplasias, while in mice, deficiency in COMP or matrilin 3 does not cause any pronounced skeletal abnormalities. Given the similar functions of COMP and matrilin 3 in the assembly and stabilization of the extracellular matrix, our aim was to determine whether these proteins could functionally compensate for each other. METHODS: To assess this putative redundancy of COMP and matrilin 3, we generated COMP/matrilin 3 double-deficient mice and performed an in-depth analysis of their skeletal development. RESULTS: At the newborn stage, the overall skeletal morphology of the double mutants was normal, but at 1 month of age, the long bones were shortened and the total body length reduced. Peripheral quantitative computed tomography revealed increased metaphyseal trabecular bone mineral density in the femora. Moreover, the degradation of aggrecan in the cartilage remnants in the metaphyseal trabecular bone was delayed, paralleled by increased deposition of tissue inhibitor of metalloproteinases 3 (TIMP-3). The structure and morphology of the growth plate were grossly normal, but in the center, focal closures were observed, a phenotype very similar to that described in matrix metalloproteinase 13 (MMP-13)-deficient mice. CONCLUSION: We propose that a lack of COMP and matrilin 3 leads to increased deposition of TIMP-3, which causes partial inactivation of MMPs, including MMP-13, a mechanism that would explain the similarities in phenotype between COMP/matrilin 3 double-deficient and MMP-13-deficient mice.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

0 Expression