First Author | Ablonczy Z | Year | 2002 |
Journal | J Biol Chem | Volume | 277 |
Issue | 43 | Pages | 40491-8 |
PubMed ID | 12176991 | Mgi Jnum | J:79743 |
Mgi Id | MGI:2388868 | Doi | 10.1074/jbc.M205507200 |
Citation | Ablonczy Z, et al. (2002) 11-cis-retinal reduces constitutive opsin phosphorylation and improves quantum catch in retinoid-deficient mouse rod photoreceptors. J Biol Chem 277(43):40491-8 |
abstractText | Rpe65(-/-) mice produce minimal amounts of 11-cis-retinal, the ligand necessary for the formation of photosensitive visual pigments. Therefore, the apoprotein opsin in these animals has not been exposed to its normal ligand. The Rpe65(-/-) mice contain less than 0.1% of wild type levels of rhodopsin. Mass spectrometric analysis of opsin from Rpe65(-/-) mice revealed unusually high levels of phosphorylation in dark-adapted mice but no other structural alterations. Single flash and flicker electroretinograms (ERGs) from 1-month-old animals showed trace rod function but no cone response. B-wave kinetics of the single-flash ERG are comparable with those of dark-adapted wild type mice containing a full compliment of rhodopsin. Application (intraperitoneal injection) of 11-cis-retinal to Rpe65(-/-) mice increased the rod ERG signal, increased levels of rhodopsin, and decreased opsin phosphorylation. Therefore, exogenous 11-cis-retinal improves photoreceptor function by regenerating rhodopsin and removes constitutive opsin phosphorylation. Our results indicate that opsin, which has not been exposed to 11-cis-retinal, does not generate the activity generally associated with the bleached apoprotein. |