|  Help  |  About  |  Contact Us

Publication : GM-CSF Promotes Chronic Disability in Experimental Autoimmune Encephalomyelitis by Altering the Composition of Central Nervous System-Infiltrating Cells, but Is Dispensable for Disease Induction.

First Author  Duncker PC Year  2018
Journal  J Immunol Volume  200
Issue  3 Pages  966-973
PubMed ID  29288202 Mgi Jnum  J:257651
Mgi Id  MGI:6112678 Doi  10.4049/jimmunol.1701484
Citation  Duncker PC, et al. (2018) GM-CSF Promotes Chronic Disability in Experimental Autoimmune Encephalomyelitis by Altering the Composition of Central Nervous System-Infiltrating Cells, but Is Dispensable for Disease Induction. J Immunol 200(3):966-973
abstractText  GM-CSF has been portrayed as a critical cytokine in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and, ostensibly, in multiple sclerosis. C57BL/6 mice deficient in GM-CSF are resistant to EAE induced by immunization with myelin oligodendrocyte glycoprotein (MOG)35-55 The mechanism of action of GM-CSF in EAE is poorly understood. In this study, we show that GM-CSF augments the accumulation of MOG35-55-specific T cells in the skin draining lymph nodes of primed mice, but it is not required for the development of encephalitogenic T cells. Abrogation of GM-CSF receptor signaling in adoptive transfer recipients of MOG35-55-specific T cells did not alter the incidence of EAE or the trajectory of its initial clinical course, but it limited the extent of chronic CNS tissue damage and neurologic disability. The attenuated clinical course was associated with a relative dearth of MOG35-55-specific T cells, myeloid dendritic cells, and neutrophils, as well as an abundance of B cells, within CNS infiltrates. Our data indicate that GM-CSF drives chronic tissue damage and disability in EAE via pleiotropic pathways, but it is dispensable during early lesion formation and the onset of neurologic deficits.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

0 Expression