|  Help  |  About  |  Contact Us

Publication : Activated FGFR3 promotes bone formation via accelerating endochondral ossification in mouse model of distraction osteogenesis.

First Author  Osawa Y Year  2017
Journal  Bone Volume  105
Pages  42-49 PubMed ID  28802681
Mgi Jnum  J:257075 Mgi Id  MGI:6112960
Doi  10.1016/j.bone.2017.05.016 Citation  Osawa Y, et al. (2017) Activated FGFR3 promotes bone formation via accelerating endochondral ossification in mouse model of distraction osteogenesis. Bone 105:42-49
abstractText  Achondroplasia (ACH) is one of the most common short-limbed skeletal dysplasias caused by gain-of-function mutations in the fibroblast growth factor receptors 3 (FGFR3) gene. Distraction osteogenesis (DO) is a treatment option for short stature in ACH in some countries. Although the patients with ACH usually show faster healing in DO, details of the newly formed bone have not been examined. We have developed a mouse model of DO and analyzed new bone regenerates of the transgenic mice with ACH (Fgfr3(ach) mice) histologically and morphologically. We established two kinds of DO protocols, the short-DO consisted of 5days of latency period followed by 5days of distraction with a rate of 0.4mm per 24h, and the long-DO consisted of the same latency period followed by 7days of distraction with a rate of 0.3mm per 12h. The callus formation was evaluated radiologically by bone fill score and quantified by micro-CT scan in both protocols. The histomorphometric analysis was performed in the short-DO protocol by various stainings, including Villanueva Goldner, Safranin-O/Fast green, tartrate-resistant acid phosphatase, and type X collagen. Bone fill scores were significantly higher in Fgfr3(ach) mice than in wild-type mice in both protocols. The individual bone parameters, including bone volume and bone volume/tissue volume, were also significantly higher in Fgfr3(ach) mice than in wild-type mice in both protocols. The numbers of osteoblasts, as well as osteoclasts, around the trabecular bone were increased in Fgfr3(ach) mice. Cartilaginous tissues of the distraction region rapidly disappeared in Fgfr3(ach) mice compared to wild-type mice during the consolidation phase. Similarly, type X collagen-positive cells were markedly decreased in Fgfr3(ach) mice during the same period. Fgfr3(ach) mice exhibited accelerated bone regeneration after DO. Accelerated endochondral ossification could contribute to faster healing in Fgfr3(ach) mice.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

0 Expression