|  Help  |  About  |  Contact Us

Publication : Connexin37 deficiency alters organic bone matrix, cortical bone geometry, and increases Wnt/β-catenin signaling.

First Author  Pacheco-Costa R Year  2017
Journal  Bone Volume  97
Pages  105-113 PubMed ID  28096061
Mgi Jnum  J:255162 Mgi Id  MGI:6113185
Doi  10.1016/j.bone.2017.01.010 Citation  Pacheco-Costa R, et al. (2017) Connexin37 deficiency alters organic bone matrix, cortical bone geometry, and increases Wnt/beta-catenin signaling. Bone 97:105-113
abstractText  Deletion of connexin (Cx) 37 in mice leads to increased cancellous bone mass due to defective osteoclast differentiation. Paradoxically; however, Cx37-deficient mice exhibit reduced cortical thickness accompanied by higher bone strength, suggesting a contribution of Cx37 to bone matrix composition. Thus, we investigated whether global deletion of Cx37 alters the composition of organic bone extracellular matrix. Five-month-old Cx37(-/-) mice exhibited increased marrow cavity area, and periosteal and endocortical bone surface resulting in higher total area in tibia compared to Cx37(+/+) control mice. Deletion of Cx37 increased genes involved in collagen maturation (loxl3 and loxl4) and glycosaminoglycans- (chsy1, chpf and has3) proteoglycans- associated genes (biglycan and decorin). In addition, expression of type II collagen assessed by immunostaining was increased by 82% whereas collagen maturity by picrosirius-polarizarion tended to be reduced (p=0.071). Expression of glycosaminoglycans by histochemistry was decreased, whereas immunostaining revealed that biglycan was unchanged and decorin was slightly increased in Cx37(-/-) bone sections. Consistent with these in vivo findings, MLO-Y4 osteocytic cells silenced for Cx37 gene exhibited increased mRNA levels for collagen synthesis (col1a1 and col3a1) and collagen maturation (lox, loxl1 and loxl2 genes). Furthermore, mechanistic studies showed Wnt/beta-catenin activation in MLO-Y4 osteocytic cells, L5 vertebra, and authentic calvaria-derived osteocytes isolated by fluorescent-activated cell sorter. Our findings demonstrate that altered profile of the bone matrix components in Cx37-deficient mice acts in favor of higher resistance to fracture in long bones.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression