|  Help  |  About  |  Contact Us

Publication : RNase-L deficiency exacerbates experimental colitis and colitis-associated cancer.

First Author  Long TM Year  2013
Journal  Inflamm Bowel Dis Volume  19
Issue  6 Pages  1295-305
PubMed ID  23567782 Mgi Jnum  J:317298
Mgi Id  MGI:6852165 Doi  10.1097/MIB.0b013e318281f2fd
Citation  Long TM, et al. (2013) RNase-L deficiency exacerbates experimental colitis and colitis-associated cancer. Inflamm Bowel Dis 19(6):1295-305
abstractText  BACKGROUND: The endoribonuclease RNase-L is a type-I interferon (IFN)-regulated component of the innate immune response that functions in antiviral, antibacterial, and antiproliferative activities. RNase-L produces RNA agonists of RIG-I-like receptors, sensors of cytosolic pathogen-associated RNAs that induce cytokines including IFN-beta. IFN-beta and RIG-I-like receptors signaling mediate protective responses against experimental colitis and colitis-associated cancer and contribute to gastrointestinal homeostasis. Therefore, we investigated a role for RNase-L in murine colitis and colitis-associated cancer and its association with RIG-I-like receptors signaling in response to bacterial RNA. METHODS: Colitis was induced in wild type-deficient and RNase-L-deficient mice (RNase-L(-)/(-)) by administration of dextran sulfate sodium (DSS). Colitis-associated cancer was induced by DSS and azoxymethane (AOM). Histological analysis and immunohistochemistry were performed on colon tissue to analyze immune cell infiltration and tissue damage after induction of colitis. Expression of cytokines was measured by quantitative real-time-PCR and ELISA. RESULTS: DSS-treated RNase-L(-)/(-) mice exhibited a significantly higher clinical score, delayed leukocyte infiltration, reduced expression of IFN-beta, tumor necrosis factor alpha, interleukin-1beta, and interleukin-18 at early times post-DSS exposure, and increased mortality as compared with wild-type mice. DSS/AOM-treated RNase-L(-)/(-) mice displayed an increased tumor burden. Bacterial RNA triggered IFN-beta production in an RNase-L-dependent manner and provided a potential mechanism by which RNase-L contributes to the gastrointestinal immune response to microbiota and protects against experimental colitis and colitis-associated cancer. CONCLUSIONS: RNase-L promotes the innate immune response to intestinal damage and ameliorates murine colitis and colitis-associated cancer. The RNase-L-dependent production of IFN-beta stimulated by bacterial RNA may be a mechanism to protect against gastrointestinal inflammatory disease.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression