|  Help  |  About  |  Contact Us

Publication : MIST1 regulates the pancreatic acinar cell expression of Atp2c2, the gene encoding secretory pathway calcium ATPase 2.

First Author  Garside VC Year  2010
Journal  Exp Cell Res Volume  316
Issue  17 Pages  2859-70
PubMed ID  20599950 Mgi Jnum  J:165040
Mgi Id  MGI:4836109 Doi  10.1016/j.yexcr.2010.06.014
Citation  Garside VC, et al. (2010) MIST1 regulates the pancreatic acinar cell expression of Atp2c2, the gene encoding secretory pathway calcium ATPase 2. Exp Cell Res 316(17):2859-70
abstractText  MIST1 is a transcription factor expressed in pancreatic acinar cells and other serous exocrine cells. Mice harboring a targeted deletion of the Mist1 gene (Mist1(-/-)) exhibit alterations in acinar regulated exocytosis and aberrant Ca(2+) signaling that are normally controlled by acinar cell Ca(2+)-ATPases. Previous studies indicated that total sarcoendoplasmic reticulum Ca(2+)-ATPases (SERCA) and plasma membrane Ca(2+)-ATPases (PMCA) remained unaffected in Mist1(-/-) acinar cultures. Therefore, we have assessed the expression of Atp2c2, the gene that encodes the secretory pathway Ca(2+)-ATPase 2 (SPCA2). We revealed a dramatic decrease in pancreatic expression of Atp2a2 mRNA and SPCA2 protein in Mist1(-/-) mice. Surprisingly, this analysis indicated that the acinar-specific Atp2c2 mRNA is a novel transcript, consisting of only the 3' end of the gene and the protein and localizes to the endoplasmic reticulum. Expression of SPCA2 was also lost in Mist1(-/-) secretory cells of the salivary glands and seminal vesicles, suggesting that Atp2c2 transcription is regulated by MIST1. Indeed, inducible MIST1 expression in Mist1(-/-) pancreatic acinar cells restored normal Atp2c2 expression, supporting a role for MIST1 in regulating the Atp2c2 gene. Based on these results, we have identified a new Atp2c2 transcript, the loss of which may be linked to the Mist1(-/-) phenotype.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

0 Expression