|  Help  |  About  |  Contact Us

Publication : Mice lacking the transcription factor Mist1 exhibit an altered stress response and increased sensitivity to caerulein-induced pancreatitis.

First Author  Kowalik AS Year  2007
Journal  Am J Physiol Gastrointest Liver Physiol Volume  292
Issue  4 Pages  G1123-32
PubMed ID  17170023 Mgi Jnum  J:121545
Mgi Id  MGI:3710443 Doi  10.1152/ajpgi.00512.2006
Citation  Kowalik AS, et al. (2007) Mice lacking the transcription factor Mist1 exhibit an altered stress response and increased sensitivity to caerulein-induced pancreatitis. Am J Physiol Gastrointest Liver Physiol 292(4):G1123-32
abstractText  Several animal models have been developed to investigate the pathobiology of pancreatitis, but few studies have examined the effects that altered pancreatic gene expression have in these models. In this study, the sensitivity to secretagogue-induced pancreatitis was examined in a mouse line that has an altered acinar cell environment due to the targeted deletion of Mist1. Mist1 is an exocrine specific transcription factor important for the complete differentiation and function of pancreatic acinar cells. Mice lacking the Mist1 gene [Mist1 knockout (KO) mice] exhibit cellular disorganization and functional defects in the exocrine pancreas but no gross morphological defects. Following the induction of pancreatitis with caerulein, a CCK analog, we observed elevated serum amylase levels, necrosis, and tissue damage in Mist1 KO mice, indicating increased pancreatic damage. There was also a delay in the regeneration of acinar tissue in Mist1 KO animals. Molecular profiling revealed an altered activation of stress response genes in Mist1 KO pancreatic tissue compared with wild-type (WT) tissue following the induction of pancreatitis. In particular, Western blot analysis for activating transcription factor 3 and phosphorylated eukaryotic initiation factor 2alpha (eIF2alpha), mediators of endoplasmic reticulum (ER) stress, indicated limited activation of this pathway in Mist1 KO animals compared with WT controls. Conversely, Mist1 KO pancreatic tissue exhibits increased expression of growth arrest and DNA damage inducible 34 protein, an inhibitor of eIF2alpha phosphorylation, before and after the induction of pancreatitis. These finding suggest that activation of the ER stress pathway is a protective event in the progression of pancreatitis and highlight the Mist1 KO mouse line as an important new model for studying the molecular events that contribute to the sensitivity to pancreatic injury.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression