First Author | Koh HJ | Year | 2010 |
Journal | Proc Natl Acad Sci U S A | Volume | 107 |
Issue | 35 | Pages | 15541-6 |
PubMed ID | 20713714 | Mgi Jnum | J:163747 |
Mgi Id | MGI:4829704 | Doi | 10.1073/pnas.1008131107 |
Citation | Koh HJ, et al. (2010) Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse skeletal muscle. Proc Natl Acad Sci U S A 107(35):15541-6 |
abstractText | The signaling mechanisms that mediate the important effects of contraction to increase glucose transport in skeletal muscle are not well understood, but are known to occur through an insulin-independent mechanism. Muscle-specific knockout of LKB1, an upstream kinase for AMPK and AMPK-related protein kinases, significantly inhibited contraction-stimulated glucose transport. This finding, in conjunction with previous studies of ablated AMPKalpha2 activity showing no effect on contraction-stimulated glucose transport, suggests that one or more AMPK-related protein kinases are important for this process. Muscle contraction increased sucrose nonfermenting AMPK-related kinase (SNARK) activity, an effect blunted in the muscle-specific LKB1 knockout mice. Expression of a mutant SNARK in mouse tibialis anterior muscle impaired contraction-stimulated, but not insulin-stimulated, glucose transport. Whole-body SNARK heterozygotic knockout mice also had impaired contraction-stimulated glucose transport in skeletal muscle, and knockdown of SNARK in C2C12 muscle cells impaired sorbitol-stimulated glucose transport. SNARK is activated by muscle contraction and is a unique mediator of contraction-stimulated glucose transport in skeletal muscle. |