First Author | McCutcheon JE | Year | 2008 |
Journal | Eur J Neurosci | Volume | 27 |
Issue | 3 | Pages | 683-90 |
PubMed ID | 18279320 | Mgi Jnum | J:132717 |
Mgi Id | MGI:3776718 | Doi | 10.1111/j.1460-9568.2008.06043.x |
Citation | McCutcheon JE, et al. (2008) Genetic background influences the behavioural and molecular consequences of neurokinin-1 receptor knockout. Eur J Neurosci 27(3):683-90 |
abstractText | Genetic background affects animal phenotype and therefore is of particular relevance to studies using genetically manipulated mice. Strain differences in hypothalamic-pituitary-adrenocortical (HPA) axis activity may contribute to background-specificity of some mutations. Here, we analysed components of the HPA axis in mice lacking a functional neurokinin-1 receptor (NK1-/-) on two backgrounds: backcrossed C57BL/6 (B6) and mixed C57BL/6 x 129/sv (129B6). We hypothesized that HPA axis activity would vary between these strains, leading to differences in the NK1-/- phenotype. We compared levels of plasma corticosterone between the groups, and found 129B6 mice exhibited elevated levels of stress-induced corticosterone compared with B6 mice, regardless of genotype. Although the level of basal corticotrophin-releasing factor and stress-induced c-fos mRNAs did not differ between the genotypes of either strain, examination of glucocorticoid receptor immunoreactivity within the hippocampus revealed that NK1-/- mice on the 129B6 background had elevated expression compared with wild-type, whilst there was no difference between genotypes in the B6 strain. Similarly, hippocampal neurogenesis in NK1-/- mice was greater than in wild-type on the 129B6 strain, and did not differ between genotypes on the B6 background. Finally, novelty- and morphine-induced locomotion were assessed. NK1-/- mice on the 129B6 background exhibited hyperlocomotion in response to novelty and greater sensitivity to the locomotor-stimulating properties of morphine than wild-type. In contrast, in B6 mice, no differences were observed between genotypes for either locomotor behaviour. In summary, we find that HPA axis activity differs between the strains and that there are profoundly background-specific effects of the NK1 receptor mutation. |