First Author | Kumar A | Year | 1997 |
Journal | EMBO J | Volume | 16 |
Issue | 2 | Pages | 406-16 |
PubMed ID | 9029159 | Mgi Jnum | J:38654 |
Mgi Id | MGI:86038 | Doi | 10.1093/emboj/16.2.406 |
Citation | Kumar A, et al. (1997) Deficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: role of IRF-1 and NF-kappaB. EMBO J 16(2):406-16 |
abstractText | The interferon (IFN)-induced double-stranded RNA (dsRNA)-activated Ser/Thr protein kinase (PKR) plays a role in the antiviral and antiproliferative effects of IFN. PKR phosphorylates initiation factor eIF2alpha, thereby inhibiting protein synthesis, and also activates the transcription factor, nuclear factor-kappaB (NF-kappaB), by phosphorylating the inhibitor of NF-kappaB, IkappaB. Mice devoid of functional PKR (Pkr(o/o)) derived by targeted gene disruption exhibit a diminished response to IFN-gamma and poly(rI:rC) (pIC). In embryo fibroblasts derived from Pkr(o/o) mice, interferon regulatory factor 1 (IRF-1) or guanylate binding protein (Gbp) promoter-reporter constructs were unresponsive to IFN-gamma or pIC but response could be restored by co-transfection with PKR. The lack of responsiveness could be attributed to a diminished activation of IRF-1 and/or NF-kappaB in response to IFN-gamma or pIC. Thus, PKR acts as a signal transducer for IFN-stimulated genes dependent on the transcription factors IRF-1 and NF-kappaB. |