|  Help  |  About  |  Contact Us

Publication : Intracerebral accumulation of glutaric and 3-hydroxyglutaric acids secondary to limited flux across the blood-brain barrier constitute a biochemical risk factor for neurodegeneration in glutaryl-CoA dehydrogenase deficiency.

First Author  Sauer SW Year  2006
Journal  J Neurochem Volume  97
Issue  3 Pages  899-910
PubMed ID  16573641 Mgi Jnum  J:108530
Mgi Id  MGI:3624208 Doi  10.1111/j.1471-4159.2006.03813.x
Citation  Sauer SW, et al. (2006) Intracerebral accumulation of glutaric and 3-hydroxyglutaric acids secondary to limited flux across the blood-brain barrier constitute a biochemical risk factor for neurodegeneration in glutaryl-CoA dehydrogenase deficiency. J Neurochem 97(3):899-910
abstractText  Glutaric acid (GA) and 3-hydroxyglutaric acids (3-OH-GA) are key metabolites in glutaryl co-enzyme A dehydrogenase (GCDH) deficiency and are both considered to be potential neurotoxins. As cerebral concentrations of GA and 3-OH-GA have not yet been studied systematically, we investigated the tissue-specific distribution of these organic acids and glutarylcarnitine in brain, liver, skeletal and heart muscle of Gcdh-deficient mice as well as in hepatic Gcdh-/- mice and in C57Bl/6 mice following intraperitoneal loading. Furthermore, we determined the flux of GA and 3-OH-GA across the blood-brain barrier (BBB) using porcine brain microvessel endothelial cells. Concentrations of GA, 3-OH-GA and glutarylcarnitine were significantly elevated in all tissues of Gcdh-/- mice. Strikingly, cerebral concentrations of GA and 3-OH-GA were unexpectedly high, reaching similar concentrations as those found in liver. In contrast, cerebral concentrations of these organic acids remained low in hepatic Gcdh-/- mice and after intraperitoneal injection of GA and 3-OH-GA. These results suggest limited flux of GA and 3-OH-GA across the BBB, which was supported in cultured porcine brain capillary endothelial cells. In conclusion, we propose that an intracerebral de novo synthesis and subsequent trapping of GA and 3-OH-GA should be considered as a biochemical risk factor for neurodegeneration in GCDH deficiency.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

0 Expression