|  Help  |  About  |  Contact Us

Publication : The mutation ROR2W749X, linked to human BDB, is a recessive mutation in the mouse, causing brachydactyly, mediating patterning of joints and modeling recessive Robinow syndrome.

First Author  Raz R Year  2008
Journal  Development Volume  135
Issue  9 Pages  1713-23
PubMed ID  18353862 Mgi Jnum  J:134490
Mgi Id  MGI:3788972 Doi  10.1242/dev.015149
Citation  Raz R, et al. (2008) The mutation ROR2W749X, linked to human BDB, is a recessive mutation in the mouse, causing brachydactyly, mediating patterning of joints and modeling recessive Robinow syndrome. Development 135(9):1713-23
abstractText  Mutations in ROR2 result in a spectrum of genetic disorders in humans that are classified, depending on the nature of the mutation and the clinical phenotype, as either autosomal dominant brachydactyly type B (BDB, MIM 113000) or recessive Robinow syndrome (RRS, MIM 268310). In an attempt to model BDB in mice, the mutation W749X was engineered into the mouse Ror2 gene. In contrast to the human situation, mice heterozygous for Ror2(W749FLAG) are normal and do not develop brachydactyly, whereas homozygous mice exhibit features resembling RRS. Furthermore, both Ror2(W749FLAG/W749FLAG) and a previously engineered mutant, Ror2(TMlacZ/TMlacZ), lack the P2/P3 joint. Absence of Gdf5 expression at the corresponding interzone suggests that the defect is in specification of the joint. As this phenotype is absent in mice lacking the entire Ror2 gene, it appears that specification of the P2/P3 joint is affected by ROR2 activity. Finally, Ror2(W749FLAG/W749FLAG) mice survive to adulthood and exhibit phenotypes (altered body composition, reduced male fertility) not observed in Ror2 knockout mice, presumably due to the perinatal lethality of the latter. Therefore, Ror2(W749FLAG/W749FLAG) mice represent a postnatal model for RRS, provide insight into the mechanism of joint specification, and uncover novel roles of Ror2 in the mouse.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

14 Bio Entities

0 Expression