|  Help  |  About  |  Contact Us

Publication : Targeted disruption of the homeobox transcription factor Bapx1 results in lethal skeletal dysplasia with asplenia and gastroduodenal malformation.

First Author  Akazawa H Year  2000
Journal  Genes Cells Volume  5
Issue  6 Pages  499-513
PubMed ID  10886375 Mgi Jnum  J:77612
Mgi Id  MGI:2182163 Doi  10.1046/j.1365-2443.2000.00339.x
Citation  Akazawa H, et al. (2000) Targeted disruption of the homeobox transcription factor Bapx1 results in lethal skeletal dysplasia with asplenia and gastroduodenal malformation. Genes Cells 5(6):499-513
abstractText  BACKGROUND: NK homeobox genes have been shown to play important roles in cell-type specification and organogenesis. Murine Bapx1, a member of NK homeobox gene family, is expressed in all the cartilageous tissues that undergo endochondral bone formation, and in gut mesentery during embryogenesis, suggesting that Bapx1 may be a key transcription factor ragulating the development of these organs. RESULTS: We generated Bapx1-deficient mice by gene targeting. Bapx1-/- mice exhibited lethal skeletal dysplasia, with abnormal development of the vertebral column and some craniofacial bones, accompanied with asplenia and gastroduodenal malformation. We showed that the proliferative activity of the sclerotome cells, forming the vertebral column, was significantly reduced in Bapx1-/- embryos. The sclerotome cells of the mutants appeared to migrate and condense normally, but subsequent differentiation into the mature vertebral bodies and intervertebral discs were affected. The sclerotome cells in the vertebral bodies failed to differentiate into hypertrophic chondrocytes, as revealed by the undetected expression of Col10a1 and Osteopontin, and the sclerotome cells in the intervertebral discs failed to express the typical extracellular matrix proteins Col2a1, Col9a2 and aggrecan. Furthermore, we investigated the effect of loss of Bapx1 on the expression of some transcription factors, identified to be expressed in the developing sclerotome and be required for normal development of the vertebral column. Among them, we found that the expression of MFH-1 (mesenchyme forkhead-1), which was reported to regulate the proliferation and differentiation of sclerotome cells, was significantly reduced in ventromedial sclerotome cells in Bapx1-/- mice. CONCLUSION: Our analysis provided evidence that Bapx1 was indispensable for normal development of ventromedial structure of vertebral column and some of craniofacial bones, splenogenesis and morphogenesis of gastroduodenal tract.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

12 Bio Entities

0 Expression