|  Help  |  About  |  Contact Us

Publication : Implication of 5-HT in the Dysregulation of Chloride Homeostasis in Prenatal Spinal Motoneurons from the G93A Mouse Model of Amyotrophic Lateral Sclerosis.

First Author  Martin E Year  2020
Journal  Int J Mol Sci Volume  21
Issue  3 PubMed ID  32046135
Mgi Jnum  J:357582 Mgi Id  MGI:7763850
Doi  10.3390/ijms21031107 Citation  Martin E, et al. (2020) Implication of 5-HT in the Dysregulation of Chloride Homeostasis in Prenatal Spinal Motoneurons from the G93A Mouse Model of Amyotrophic Lateral Sclerosis. Int J Mol Sci 21(3)
abstractText  Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron degeneration and muscle paralysis. The early presymptomatic onset of abnormal processes is indicative of cumulative defects that ultimately lead to a late manifestation of clinical symptoms. It remains of paramount importance to identify the primary defects that underlie this condition and to determine how these deficits lead to a cycle of deterioration. We recently demonstrated that prenatal E17.5 lumbar spinal motoneurons (MNs) from SOD1(G93A) mice exhibit a KCC2-related alteration in chloride homeostasis, i.e., the E(GABAAR) is more depolarized than in WT littermates. Here, using immunohistochemistry, we found that the SOD1(G93A) lumbar spinal cord is less enriched with 5-HT descending fibres than the WT lumbar spinal cord. High-performance liquid chromatography confirmed the lower level of the monoamine 5-HT in the SOD1(G93A) spinal cord compared to the WT spinal cord. Using ex vivo perforated patch-clamp recordings of lumbar MNs coupled with pharmacology, we demonstrated that 5-HT strongly hyperpolarizes the E(GABAAR) by interacting with KCC2. Therefore, the deregulation of the interplay between 5-HT and KCC2 may explain the alteration in chloride homeostasis detected in prenatal SOD1(G93A) MNs. In conclusion, 5-HT and KCC2 are two likely key factors in the presymptomatic phase of ALS, particular in familial ALS involving the SOD1(G93A) mutation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

0 Expression