|  Help  |  About  |  Contact Us

Publication : Early motor and electrophysiological changes in transgenic mouse model of amyotrophic lateral sclerosis and gender differences on clinical outcome.

First Author  Alves CJ Year  2011
Journal  Brain Res Volume  1394
Pages  90-104 PubMed ID  21354109
Mgi Jnum  J:172529 Mgi Id  MGI:5008218
Doi  10.1016/j.brainres.2011.02.060 Citation  Alves CJ, et al. (2011) Early motor and electrophysiological changes in transgenic mouse model of amyotrophic lateral sclerosis and gender differences on clinical outcome. Brain Res 1394:90-104
abstractText  Amyotrophic lateral sclerosis (ALS) is a progressive degenerative disorder affecting motoneurons and the SOD1(G93A) transgenic mice are widely employed to study disease physiopathology and therapeutic strategies. Despite the cellular and biochemical evidences of an early motor system dysfunction, the conventional behavioral tests do not detect early motor impairments in SOD1 mouse model. We evaluated early changes in motor behavior of ALS mice by doing the analyses of tail elevation, footprint, automatic recording of motor activities by means of an infrared motion sensor activity system and electrophysiological measurements in male and female wild-type (WT) and SOD1(G93A) mice from postnatal day (P) 20 up to endpoint. The classical evaluations of mortality, weight loss, tremor, rotometer, hanging wire and inclined plane were also employed. There was a late onset (after P90) of the impairments of classical parameters and the outcome varied between genders of ALS mice, being tremor, cumulative survival, weight loss and neurological score about 10days earlier in male than female ALS mice and also about 20days earlier in ALS males regarding rotarod and hanging wire performances. While diminution of hindpaw base was 10days earlier in ALS males (P110) compared to females, the steep length decreased 40days earlier in ALS females (P60) than ALS males. The automatic analysis of motor impairments showed substantial late changes (after P90) of motility and locomotion in the ALS females, but not in the ALS males. It was surprising that the scores of tail elevation were already decreased in ALS males and females by P40, reaching the minimal values at the endpoint. The electrophysiological analyses showed early changes of measures in the ALS mouse sciatic nerve, i.e., decreased values of amplitude (P40) and nerve conduction velocity (P20), and also an increased latency (P20) reaching maximal level of impairments at the late disease phase. The early changes were not accompanied by reductions of neuronal protein markers of neurofilament 200 and ChAT in the ventral part of the lumbar spinal cord of P20 and P60 ALS mice by means of Western blot technique, despite remarkable decreases of those protein levels in P120 ALS mice. In conclusion, early changes of motor behavior and electrophysiological parameters in ALS mouse model must be taken into attention in the analyses of disease mechanisms and therapeutic effects.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression