|  Help  |  About  |  Contact Us

Publication : Muscle specific kinase (MuSK) activation preserves neuromuscular junctions in the diaphragm but is not sufficient to provide a functional benefit in the SOD1<sup>G93A</sup> mouse model of ALS.

First Author  Sengupta-Ghosh A Year  2019
Journal  Neurobiol Dis Volume  124
Pages  340-352 PubMed ID  30528255
Mgi Jnum  J:274789 Mgi Id  MGI:6295778
Doi  10.1016/j.nbd.2018.12.002 Citation  Sengupta-Ghosh A, et al. (2019) Muscle specific kinase (MuSK) activation preserves neuromuscular junctions in the diaphragm but is not sufficient to provide a functional benefit in the SOD1(G93A) mouse model of ALS. Neurobiol Dis 124:340-352
abstractText  Amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting motor neurons, is characterized by rapid decline of motor function and ultimately respiratory failure. As motor neuron death occurs late in the disease, therapeutics that prevent the initial disassembly of the neuromuscular junction may offer optimal functional benefit and delay disease progression. To test this hypothesis, we treated the SOD1(G93A) mouse model of ALS with an agonist antibody to muscle specific kinase (MuSK), a receptor tyrosine kinase required for the formation and maintenance of the neuromuscular junction. Chronic MuSK antibody treatment fully preserved innervation of the neuromuscular junction when compared with control-treated mice; however, no preservation of diaphragm function, motor neurons, or survival benefit was detected. These data show that anatomical preservation of neuromuscular junctions in the diaphragm via MuSK activation does not correlate with functional benefit in SOD1(G93A) mice, suggesting caution in employing MuSK activation as a therapeutic strategy for ALS patients.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

0 Expression