First Author | Haspel D | Year | 2005 |
Journal | Diabetologia | Volume | 48 |
Issue | 5 | Pages | 913-21 |
PubMed ID | 15830184 | Mgi Jnum | J:99668 |
Mgi Id | MGI:3583416 | Doi | 10.1007/s00125-005-1720-8 |
Citation | Haspel D, et al. (2005) Crosstalk between membrane potential and cytosolic Ca2+ concentration in beta cells from Sur1-/- mice. Diabetologia 48(5):913-21 |
abstractText | AIMS/HYPOTHESIS: Islets or beta cells from Sur1(-/-) mice were used to determine whether changes in plasma membrane potential (V(m)) remain coupled to changes in cytosolic Ca(2+) ([Ca(2+)](i)) in the absence of K(ATP) channels and thus provide a triggering signal for insulin secretion. The study also sought to elucidate whether [Ca(2+)](i) influences oscillations in V(m) in sur1(-/-) beta cells. METHODS: Plasma membrane potential and ion currents were measured with microelectrodes and the patch-clamp technique. [Ca(2+)](i) was monitored with the fluorescent dye fura-2. Insulin secretion from isolated islets was determined by static incubations. RESULTS: Membrane depolarisation of Sur1(-/-) islets by arginine or increased extracellular K(+), elevated [Ca(2+)](i) and augmented insulin secretion. Oligomycin completely abolished glucose-stimulated insulin release from Sur1(-/-) islets. Oscillations in V(m) were influenced by [Ca(2+)](i) as follows: (1) elevation of extracellular Ca(2+) lengthened phases of membrane hyperpolarisation; (2) simulating a burst of action potentials induced a Ca(2+)-dependent outward current that was augmented by increased Ca(2+) influx through L-type Ca(2+) channels; (3) Ca(2+) depletion of intracellular stores by cyclopiazonic acid increased the burst frequency in Sur1(-/-) islets, elevating [Ca(2+)](i) and insulin secretion; (4) store depletion activated a Ca(2+) influx that was not inhibitable by the L-type Ca(2+) channel blocker D600. CONCLUSIONS/INTERPRETATION: Although V(m) is largely uncoupled from glucose metabolism in the absence of K(ATP) channels, increased electrical activity leads to elevations of [Ca(2+)](i) that are sufficient to stimulate insulin secretion. In Sur1(-/-) beta cells, [Ca(2+)](i) exerts feedback mechanisms on V(m) by activating a hyperpolarising outward current and by depolarising V(m) via store-operated ion channels. |