|  Help  |  About  |  Contact Us

Publication : Unilateral nephrectomy leads to up-regulation of syndecan-2- and TGF-beta-mediated glomerulosclerosis in syndecan-4 deficient male mice.

First Author  Cevikbas F Year  2008
Journal  Matrix Biol Volume  27
Issue  1 Pages  42-52
PubMed ID  17681770 Mgi Jnum  J:130690
Mgi Id  MGI:3772127 Doi  10.1016/j.matbio.2007.07.003
Citation  Cevikbas F, et al. (2008) Unilateral nephrectomy leads to up-regulation of syndecan-2- and TGF-beta-mediated glomerulosclerosis in syndecan-4 deficient male mice. Matrix Biol 27(1):42-52
abstractText  Syndecan-4 is an ubiquitous, plasma membrane-spanning heparan sulfate proteoglycan involved in proliferation, differentiation, adhesion and migration of cells in vitro. Syndecan-4 knockout (KO) mice show no obvious defects but respond abnormally to experimental stress conditions. In the adult, syndecan-4 is the most abundant syndecan of renal tissue. We therefore investigated the consequences of syndecan-4 deficiency during progression of kidney disease using unilaterally nephrectomized mice, a model of glomerular hyperfiltration and renal hypertrophy. 60 days after unilateral nephrectomy (UNX), mesangial expansion, enhanced matrix production (collagens I and IV, fibronectin) and focal segmental glomerulosclerosis, resembling early stages of diabetic nephropathy, was apparent in male but not female syndecan-4 KO mice. No defect was detected in wild type UNX males. Syndecan-2 mRNA and protein were not detectable in renal glomeruli of wild type mice, but were induced specifically in the glomeruli of the syndecan-4 deficient kidneys after unilateral nephrectomy. Due to the structural similarities of syndecans-2 and -4 we hypothesize that de novo-production of syndecan-2 in kidneys after unilateral nephrectomy reflects a compensatory response. However, this response is counterproductive since syndecan-2 supports the pro-sclerotic activity of TGF-beta1 which is increased in parallel with syndecan-2 synthesis. By contrast, signaling through syndecan-4 negatively controls the production of pro-sclerotic TGF-beta1.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

0 Expression