| First Author | Chiblak S | Year | 2016 |
| Journal | Sci Rep | Volume | 6 |
| Pages | 29455 | PubMed ID | 27381829 |
| Mgi Jnum | J:253760 | Mgi Id | MGI:6102374 |
| Doi | 10.1038/srep29455 | Citation | Chiblak S, et al. (2016) K-Ras and cyclooxygenase-2 coactivation augments intraductal papillary mucinous neoplasm and Notch1 mimicking human pancreas lesions. Sci Rep 6:29455 |
| abstractText | Mutational activation of K-Ras is an initiating event of pancreatic ductal adenocarcinomas (PDAC) that may develop either from pancreatic intraepithelial neoplasia (PanIN) or intraductal papillary mucinous neoplasms (IPMN). Cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) is causally related to pancreatic carcinogenesis. Here, we deciphered the impact of COX-2, a key modulator of inflammation, in concert with active mutant K-Ras(G12D) on tumor burden and gene expression signature using compound mutant mouse lines. Concomitant activation of COX-2 and K-Ras(G12D) accelerated the progression of pancreatic intraepithelial lesions predominantly with a cystic papillary phenotype resembling human IPMN. Transcriptomes derived from laser capture microdissected preneoplastic lesions of single and compound mutants revealed a signature that was significantly enriched in Notch1 signaling components. In vitro, Notch1 signaling was COX-2-dependent. In line with these findings, human IPMN stratified into intestinal, gastric and pancreatobillary types displayed Notch1 immunosignals with high prevalence, especially in the gastric lesions. In conclusion, a yet unknown link between activated Ras, protumorigenic COX-2 and Notch1 in IPMN onset was unraveled. |