|  Help  |  About  |  Contact Us

Publication : History-dependent catastrophes regulate axonal microtubule behavior.

First Author  Stepanova T Year  2010
Journal  Curr Biol Volume  20
Issue  11 Pages  1023-8
PubMed ID  20471267 Mgi Jnum  J:161962
Mgi Id  MGI:4462106 Doi  10.1016/j.cub.2010.04.024
Citation  Stepanova T, et al. (2010) History-dependent catastrophes regulate axonal microtubule behavior. Curr Biol 20(11):1023-8
abstractText  In Chinese hamster ovary cells, microtubules originate at the microtubule organizing center (MTOC) and grow persistently toward the cell edge, where they undergo catastrophe. In axons, microtubule dynamics must be regulated differently because microtubules grow parallel to the plasma membrane and there is no MTOC. GFP-tagged microtubule plus end tracking proteins (+TIPs) mark the ends of growing neuronal microtubules. Their fluorescent 'comet-like' pattern reflects turnover of +TIP binding sites. Using GFP-tagged +TIPs and fluorescence-based segmentation and tracking tools, we show that axonal microtubules grow with a constant average velocity and that they undergo catastrophes at random positions, yet in a programmed fashion. Using protein depletion approaches, we find that the +TIPs CLIP-115 and CLIP-170 affect average microtubule growth rate and growth distance in neurons but not the duration of a microtubule growth event. In N1E-115 neuroblastoma cells, we find that EB1, the core +TIP, regulates microtubule growth rate, growth distance, and duration, consistent with in vitro data. Combined, our data suggest that CLIPs influence the axonal microtubule/tubulin ratio, whereas EB1 stimulates microtubule growth and structural transitions at microtubule ends, thereby regulating microtubule catastrophes and the turnover of +TIP binding sites.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

0 Expression