|  Help  |  About  |  Contact Us

Publication : Deletion of Lkb1 in Renal Tubular Epithelial Cells Leads to CKD by Altering Metabolism.

First Author  Han SH Year  2016
Journal  J Am Soc Nephrol Volume  27
Issue  2 Pages  439-53
PubMed ID  26054542 Mgi Jnum  J:290570
Mgi Id  MGI:6443986 Doi  10.1681/ASN.2014121181
Citation  Han SH, et al. (2016) Deletion of Lkb1 in Renal Tubular Epithelial Cells Leads to CKD by Altering Metabolism. J Am Soc Nephrol 27(2):439-53
abstractText  Renal tubule epithelial cells are high-energy demanding polarized epithelial cells. Liver kinase B1 (LKB1) is a key regulator of polarity, proliferation, and cell metabolism in epithelial cells, but the function of LKB1 in the kidney is unclear. Our unbiased gene expression studies of human control and CKD kidney samples identified lower expression of LKB1 and regulatory proteins in CKD. Mice with distal tubule epithelial-specific Lkb1 deletion (Ksp-Cre/Lkb1(flox/flox)) exhibited progressive kidney disease characterized by flattened dedifferentiated tubule epithelial cells, interstitial matrix accumulation, and dilated cystic-appearing tubules. Expression of epithelial polarity markers beta-catenin and E-cadherin was not altered even at later stages. However, expression levels of key regulators of metabolism, AMP-activated protein kinase (Ampk), peroxisome proliferative activated receptor gamma coactivator 1-alpha (Ppargc1a), and Ppara, were significantly lower than those in controls and correlated with fibrosis development. Loss of Lkb1 in cultured epithelial cells resulted in energy depletion, apoptosis, less fatty acid oxidation and glycolysis, and a profibrotic phenotype. Treatment of Lkb1-deficient cells with an AMP-activated protein kinase (AMPK) agonist (A769662) or a peroxisome proliferative activated receptor alpha agonist (fenofibrate) restored the fatty oxidation defect and reduced apoptosis. In conclusion, we show that loss of LKB1 in renal tubular epithelial cells has an important role in kidney disease development by influencing intracellular metabolism.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

0 Expression