|  Help  |  About  |  Contact Us

Publication : The Ca2+ channel subunit beta2 regulates Ca2+ channel abundance and function in inner hair cells and is required for hearing.

First Author  Neef J Year  2009
Journal  J Neurosci Volume  29
Issue  34 Pages  10730-40
PubMed ID  19710324 Mgi Jnum  J:152311
Mgi Id  MGI:4358001 Doi  10.1523/JNEUROSCI.1577-09.2009
Citation  Neef J, et al. (2009) The Ca2+ channel subunit beta2 regulates Ca2+ channel abundance and function in inner hair cells and is required for hearing. J Neurosci 29(34):10730-40
abstractText  Hearing relies on Ca(2+) influx-triggered exocytosis in cochlear inner hair cells (IHCs). Here we studied the role of the Ca(2+) channel subunit Ca(V)beta(2) in hearing. Of the Ca(V)beta(1-4) mRNAs, IHCs predominantly contained Ca(V)beta(2). Hearing was severely impaired in mice lacking Ca(V)beta(2) in extracardiac tissues (Ca(V)beta(2)(-/-)). This involved deficits in cochlear amplification and sound encoding. Otoacoustic emissions were reduced or absent in Ca(V)beta(2)(-/-) mice, which showed strongly elevated auditory thresholds in single neuron recordings and auditory brainstem response measurements. Ca(V)beta(2)(-/-) IHCs showed greatly reduced exocytosis (by 68%). This was mostly attributable to a decreased number of membrane-standing Ca(V)1.3 channels. Confocal Ca(2+) imaging revealed presynaptic Ca(2+) microdomains albeit with much lower amplitudes, indicating synaptic clustering of fewer Ca(V)1.3 channels. The coupling of the remaining Ca(2+) influx to IHC exocytosis appeared unaffected. Extracellular recordings of sound-evoked spiking in the cochlear nucleus and auditory nerve revealed reduced spike rates in the Ca(V)beta(2)(-/-) mice. Still, sizable onset and adapted spike rates were found during suprathreshold stimulation in Ca(V)beta(2)(-/-) mice. This indicated that residual synaptic sound encoding occurred, although the number of presynaptic Ca(V)1.3 channels and exocytosis were reduced to one-third. The normal developmental upregulation, clustering, and gating of large-conductance Ca(2+) activated potassium channels in IHCs were impaired in the absence of Ca(V)beta(2). Moreover, we found the developmental efferent innervation to persist in Ca(V)beta(2)-deficient IHCs. In summary, Ca(V)beta(2) has an essential role in regulating the abundance and properties of Ca(V)1.3 channels in IHCs and, thereby, is critical for IHC development and synaptic encoding of sound.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

0 Expression