|  Help  |  About  |  Contact Us

Publication : Genetic resiliency associated with dominant lethal TPM1 mutation causing atrial septal defect with high heritability.

First Author  Teekakirikul P Year  2022
Journal  Cell Rep Med Volume  3
Issue  2 Pages  100501
PubMed ID  35243414 Mgi Jnum  J:320916
Mgi Id  MGI:6883556 Doi  10.1016/j.xcrm.2021.100501
Citation  Teekakirikul P, et al. (2022) Genetic resiliency associated with dominant lethal TPM1 mutation causing atrial septal defect with high heritability. Cell Rep Med 3
abstractText  Analysis of large-scale human genomic data has yielded unexplained mutations known to cause severe dis-ease in healthy individuals. Here, we report the unexpected recovery of a rare dominant lethal mutation in TPM1, a sarcomeric actin-binding protein, in eight individuals with large atrial septal defect (ASD) in a five-generation pedigree. Mice with Tpm1 mutation exhibit early embryonic lethality with disrupted myofibril as-sembly and no heartbeat. However, patient-induced pluripotent-stem-cell-derived cardiomyocytes show normal beating with mild myofilament defect, indicating disease suppression. A variant in TLN2, another myofilament actin-binding protein, is identified as a candidate suppressor. Mouse CRISPR knock-in (KI) of both the TLN2 and TPM1 variants rescues heart beating, with near-term fetuses exhibiting large ASD. Thus, the role of TPM1 in ASD pathogenesis unfolds with suppression of its embryonic lethality by protective TLN2 variant. These findings provide evidence that genetic resiliency can arise with genetic suppression of a deleterious mutation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

0 Expression