|  Help  |  About  |  Contact Us

Publication : The exon junction complex component Magoh controls brain size by regulating neural stem cell division.

First Author  Silver DL Year  2010
Journal  Nat Neurosci Volume  13
Issue  5 Pages  551-8
PubMed ID  20364144 Mgi Jnum  J:159625
Mgi Id  MGI:4452175 Doi  10.1038/nn.2527
Citation  Silver DL, et al. (2010) The exon junction complex component Magoh controls brain size by regulating neural stem cell division. Nat Neurosci 13(5):551-8
abstractText  Brain structure and size require precise division of neural stem cells (NSCs), which self-renew and generate intermediate neural progenitors (INPs) and neurons. The factors that regulate NSCs remain poorly understood, and mechanistic explanations of how aberrant NSC division causes the reduced brain size seen in microcephaly are lacking. Here we show that Magoh, a component of the exon junction complex (EJC) that binds RNA, controls mouse cerebral cortical size by regulating NSC division. Magoh haploinsufficiency causes microcephaly because of INP depletion and neuronal apoptosis. Defective mitosis underlies these phenotypes, as depletion of EJC components disrupts mitotic spindle orientation and integrity, chromosome number and genomic stability. In utero rescue experiments showed that a key function of Magoh is to control levels of the microcephaly-associated protein Lis1 during neurogenesis. Our results uncover requirements for the EJC in brain development, NSC maintenance and mitosis, thereby implicating this complex in the pathogenesis of microcephaly.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

20 Bio Entities

0 Expression