First Author | Dorstyn L | Year | 2012 |
Journal | Cell Death Differ | Volume | 19 |
Issue | 8 | Pages | 1288-98 |
PubMed ID | 22498700 | Mgi Jnum | J:204798 |
Mgi Id | MGI:5543364 | Doi | 10.1038/cdd.2012.36 |
Citation | Dorstyn L, et al. (2012) Caspase-2 deficiency promotes aberrant DNA-damage response and genetic instability. Cell Death Differ 19(8):1288-98 |
abstractText | Caspase-2 is an initiator caspase, which has been implicated to function in apoptotic and non-apoptotic signalling pathways, including cell-cycle regulation, DNA-damage signalling and tumour suppression. We previously demonstrated that caspase-2 deficiency enhances E1A/Ras oncogene-induced cell transformation and augments lymphomagenesis in the EmuMyc mouse model. Caspase-2(-/-) mouse embryonic fibroblasts (casp2(-/-) MEFs) show aberrant cell-cycle checkpoint regulation and a defective apoptotic response following DNA damage. Disruption of cell-cycle checkpoints often leads to genomic instability (GIN), which is a common phenotype of cancer cells and can contribute to cellular transformation. Here we show that caspase-2 deficiency results in increased DNA damage and GIN in proliferating cells. Casp2(-/-) MEFs readily escape senescence in culture and exhibit increased micronuclei formation and sustained DNA damage during cell culture and following gamma-irradiation. Metaphase analyses demonstrated that a lack of caspase-2 is associated with increased aneuploidy in both MEFs and in EmuMyc lymphoma cells. In addition, casp2(-/-) MEFs and lymphoma cells exhibit significantly decreased telomere length. We also noted that loss of caspase-2 leads to defective p53-mediated signalling and decreased trans-activation of p53 target genes upon DNA damage. Our findings suggest that loss of caspase-2 serves as a key function in maintaining genomic integrity, during cell proliferation and following DNA damage. |