|  Help  |  About  |  Contact Us

Publication : AT2R (Angiotensin II Type 2 Receptor)-Mediated Regulation of NCC (Na-Cl Cotransporter) and Renal K Excretion Depends on the K Channel, Kir4.1.

First Author  Wu P Year  2018
Journal  Hypertension Volume  71
Issue  4 Pages  622-630
PubMed ID  29483225 Mgi Jnum  J:284338
Mgi Id  MGI:6381174 Doi  10.1161/HYPERTENSIONAHA.117.10471
Citation  Wu P, et al. (2018) AT2R (Angiotensin II Type 2 Receptor)-Mediated Regulation of NCC (Na-Cl Cotransporter) and Renal K Excretion Depends on the K Channel, Kir4.1. Hypertension 71(4):622-630
abstractText  AT2R (AngII [angiotensin II] type 2 receptor) is expressed in the distal nephrons. The aim of the present study is to examine whether AT2R regulates NCC (Na-Cl cotransporter) and Kir4.1 of the distal convoluted tubule. AngII inhibited the basolateral 40 pS K channel (a Kir4.1/5.1 heterotetramer) in the distal convoluted tubule treated with losartan but not with PD123319. AT2R agonist also inhibits the K channel, indicating that AT2R was involved in tonic regulation of Kir4.1. The infusion of PD123319 stimulated the expression of tNCC (total NCC) and pNCC (phosphorylated NCC; Thr(53)) by a time-dependent way with the peak at 4 days. PD123319 treatment (4 days) stimulated the basolateral 40 pS K channel activity, augmented the basolateral K conductance, and increased the negativity of distal convoluted tubule membrane. The stimulation of Kir4.1 was essential for PD123319-induced increase in NCC because inhibiting AT2R increased the expression of tNCC and pNCC only in wild-type but not in the kidney-specific Kir4.1 knockout mice. Renal clearance study showed that thiazide-induced natriuretic effect was larger in PD123319-treated mice for 4 days than untreated mice. However, this effect was absent in kidney-specific Kir4.1 knockout mice which were also Na wasting under basal conditions. Finally, application of AT2R antagonist decreased the renal ability of K excretion and caused hyperkalemia in wild-type but not in kidney-specific Kir4.1 knockout mice. We conclude that AT2R-dependent regulation of NCC requires Kir4.1 in the distal convoluted tubule and that AT2R plays a role in stimulating K excretion by inhibiting Kir4.1 and NCC.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

0 Expression