|  Help  |  About  |  Contact Us

Publication : Precommitment low-level Neurog3 expression defines a long-lived mitotic endocrine-biased progenitor pool that drives production of endocrine-committed cells.

First Author  Bechard ME Year  2016
Journal  Genes Dev Volume  30
Issue  16 Pages  1852-65
PubMed ID  27585590 Mgi Jnum  J:235658
Mgi Id  MGI:5800350 Doi  10.1101/gad.284729.116
Citation  Bechard ME, et al. (2016) Precommitment low-level Neurog3 expression defines a long-lived mitotic endocrine-biased progenitor pool that drives production of endocrine-committed cells. Genes Dev 30(16):1852-65
abstractText  The current model for endocrine cell specification in the pancreas invokes high-level production of the transcription factor Neurogenin 3 (Neurog3) in Sox9(+) bipotent epithelial cells as the trigger for endocrine commitment, cell cycle exit, and rapid delamination toward proto-islet clusters. This model posits a transient Neurog3 expression state and short epithelial residence period. We show, however, that a Neurog3(TA.LO) cell population, defined as Neurog3 transcriptionally active and Sox9(+) and often containing nonimmunodetectable Neurog3 protein, has a relatively high mitotic index and prolonged epithelial residency. We propose that this endocrine-biased mitotic progenitor state is functionally separated from a pro-ductal pool and endows them with long-term capacity to make endocrine fate-directed progeny. A novel BAC transgenic Neurog3 reporter detected two types of mitotic behavior in Sox9(+) Neurog3(TA.LO) progenitors, associated with progenitor pool maintenance or derivation of endocrine-committed Neurog3(HI) cells, respectively. Moreover, limiting Neurog3 expression dramatically increased the proportional representation of Sox9(+) Neurog3(TA.LO) progenitors, with a doubling of its mitotic index relative to normal Neurog3 expression, suggesting that low Neurog3 expression is a defining feature of this cycling endocrine-biased state. We propose that Sox9(+) Neurog3(TA.LO) endocrine-biased progenitors feed production of Neurog3(HI) endocrine-committed cells during pancreas organogenesis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

13 Bio Entities

0 Expression