|  Help  |  About  |  Contact Us

Publication : Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation.

First Author  Jenny Zhou H Year  2016
Journal  Nat Med Volume  22
Issue  9 Pages  1033-1042
PubMed ID  27548575 Mgi Jnum  J:240446
Mgi Id  MGI:5883403 Doi  10.1038/nm.4169
Citation  Zhou HJ, et al. (2016) Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med 22(9):1033-42
abstractText  Cerebral cavernous malformations (CCMs) are vascular malformations that affect the central nervous system and result in cerebral hemorrhage, seizure and stroke. CCMs arise from loss-of-function mutations in one of three genes: KRIT1 (also known as CCM1), CCM2 or PDCD10 (also known as CCM3). PDCD10 mutations in humans often result in a more severe form of the disease relative to mutations in the other two CCM genes, and PDCD10-knockout mice show severe defects, the mechanistic basis for which is unclear. We have recently reported that CCM3 regulates exocytosis mediated by the UNC13 family of exocytic regulatory proteins. Here, in investigating the role of endothelial cell exocytosis in CCM disease progression, we found that CCM3 suppresses UNC13B- and vesicle-associated membrane protein 3 (VAMP3)-dependent exocytosis of angiopoietin 2 (ANGPT2) in brain endothelial cells. CCM3 deficiency in endothelial cells augments the exocytosis and secretion of ANGPT2, which is associated with destabilized endothelial cell junctions, enlarged lumen formation and endothelial cell-pericyte dissociation. UNC13B deficiency, which blunts ANGPT2 secretion from endothelial cells, or treatment with an ANGPT2-neutralizing antibody normalizes the defects in the brain and retina caused by endothelial-cell-specific CCM3 deficiency, including the disruption of endothelial cell junctions, vessel dilation and pericyte dissociation. Thus, enhanced secretion of ANGPT2 in endothelial cells contributes to the progression of CCM disease, providing a new therapeutic approach for treating this devastating pathology.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

0 Expression