|  Help  |  About  |  Contact Us

Publication : Ventricular-subventricular zone fractones are speckled basement membranes that function as a neural stem cell niche.

First Author  Sato Y Year  2019
Journal  Mol Biol Cell Volume  30
Issue  1 Pages  56-68
PubMed ID  30379609 Mgi Jnum  J:303080
Mgi Id  MGI:6511550 Doi  10.1091/mbc.E18-05-0286
Citation  Sato Y, et al. (2019) Ventricular-subventricular zone fractones are speckled basement membranes that function as a neural stem cell niche. Mol Biol Cell 30(1):56-68
abstractText  Neural stem cells (NSCs) are retained in the adult ventricular-subventricular zone (V-SVZ), a specialized neurogenic niche with a unique cellular architecture. It currently remains unclear whether or how NSCs utilize basement membranes (BMs) in this niche. Here, we examine the molecular compositions and functions of BMs in the adult mouse V-SVZ. Whole-mount V-SVZ immunostaining revealed that fractones, which are fingerlike processes of extravascular BMs, are speckled BMs unconnected to the vasculature, and differ in their molecular composition from vascular BMs. Glial fibrillary acidic protein (GFAP)-positive astrocytes and NSCs produce and adhere to speckled BMs. Furthermore, Gfap-Cre-mediated Lamc1(flox(E1605Q)) knockin mice, in which integrin-binding activities of laminins are specifically nullified in GFAP-positive cells, exhibit a decreased number and size of speckled BMs and reduced in vitro neurosphere-forming activity. Our results reveal niche activities of fractones/speckled BMs for NSCs and provide molecular insights into how laminin-integrin interactions regulate NSCs in vivo.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

18 Bio Entities

0 Expression