|  Help  |  About  |  Contact Us

Publication : Motor dysfunction and altered synaptic transmission at the parallel fiber-Purkinje cell synapse in mice lacking potassium channels Kv3.1 and Kv3.3.

First Author  Matsukawa H Year  2003
Journal  J Neurosci Volume  23
Issue  20 Pages  7677-84
PubMed ID  12930807 Mgi Jnum  J:85144
Mgi Id  MGI:2672993 Doi  10.1523/JNEUROSCI.23-20-07677.2003
Citation  Matsukawa H, et al. (2003) Motor dysfunction and altered synaptic transmission at the parallel fiber-Purkinje cell synapse in mice lacking potassium channels Kv3.1 and Kv3.3. J Neurosci 23(20):7677-84
abstractText  Micelacking both Kv3.1 and both Kv3.3 K+ channel alleles display severe motor deficits such as tremor, myoclonus, and ataxic gait. Micelacking one to three alleles at the Kv3.1 and Kv3.3 loci exhibit in an allele dose-dependent manner a modest degree of ataxia. Cerebellar granule cells coexpress Kv3.1 and Kv3.3 K+ channels and are therefore candidate neurons that might be involved in these behavioral deficits. Hence, we investigated the synaptic mechanisms of transmission in the parallel fiber-Purkinje cell system. Action potentials of parallel fibers were broader in mice lacking both Kv3.1 and both Kv3.3 alleles and in mice lacking both Kv3.1 and a single Kv3.3 allele compared with those of wild-type mice. The transmission of high-frequency trains of action potentials was only impaired at 200 Hz but not at 100 Hz in mice lacking both Kv3.1 and Kv3.3 genes. However, paired-pulse facilitation (PPF) at parallel fiber-Purkinje cell synapses was dramatically reduced in a gene dose-dependent manner in mice lacking Kv3.1 or Kv3.3 alleles. Normal PPF could be restored by reducing the extracellular Ca2+ concentration indicating that increased activity-dependent presynaptic Ca2+ influx, at least in part caused the altered PPF in mutant mice. Induction of metabotropic glutamate receptor-mediated EPSCs was facilitated, whereas longterm depression was not impaired but rather facilitated in Kv3.1/Kv3.3 double-knockout mice. These results demonstrate the importance of Kv3 potassium channels in regulating the dynamics of synaptic transmission at the parallel fiber-Purkinje cell synapse and suggest a correlation between short-term plasticity at the parallel fiber-Purkinje cell synapse and motor performance.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

0 Expression