First Author | Barcroft LC | Year | 2004 |
Journal | Mech Dev | Volume | 121 |
Issue | 5 | Pages | 417-26 |
PubMed ID | 15147760 | Mgi Jnum | J:90406 |
Mgi Id | MGI:3043494 | Doi | 10.1016/j.mod.2004.04.005 |
Citation | Barcroft LC, et al. (2004) Deletion of the Na/K-ATPase alpha1-subunit gene (Atp1a1) does not prevent cavitation of the preimplantation mouse embryo. Mech Dev 121(5):417-26 |
abstractText | Increases in Na/K-ATPase activity occur concurrently with the onset of cavitation and are associated with increases in Na(+)-pump subunit mRNA and protein expression. We have hypothesized that the alpha1-isozyme of the Na/K-ATPase is required to mediate blastocyst formation. We have tested this hypothesis by characterizing preimplantation development in mice with a targeted disruption of the Na/K-ATPase alpha1-subunit (Atp1a1) using embryos acquired from matings between Atp1a1 heterozygous mice. Mouse embryos homozygous for a null mutation in the Na/K-ATPase alpha1-subunit gene are able to undergo compaction and cavitation. These findings demonstrate that trophectoderm transport mechanisms are maintained in the absence of the predominant isozyme of the Na(+)-pump that has previously been localized to the basolateral membranes of mammalian trophectoderm cells. The presence of multiple isoforms of Na/K-ATPase alpha- and beta-subunits at the time of cavitation suggests that there may be a degree of genetic redundancy amongst isoforms of the catalytic alpha-subunit that allows blastocyst formation to progress in the absence of the alpha1-subunit. |