|  Help  |  About  |  Contact Us

Publication : RanGAP1 maintains chromosome stability in limb bud mesenchymal cells during bone development.

First Author  Huang M Year  2024
Journal  Cell Signal Volume  120
Pages  111222 PubMed ID  38729327
Mgi Jnum  J:350481 Mgi Id  MGI:7663040
Doi  10.1016/j.cellsig.2024.111222 Citation  Huang M, et al. (2024) RanGAP1 maintains chromosome stability in limb bud mesenchymal cells during bone development. Cell Signal 120:111222
abstractText  BACKGROUND: Bone development involves the rapid proliferation and differentiation of osteogenic lineage cells, which makes accurate chromosomal segregation crucial for ensuring cell proliferation and maintaining chromosomal stability. However, the mechanism underlying the maintenance of chromosome stability during the rapid proliferation and differentiation of Prx1-expressing limb bud mesenchymal cells into osteoblastic precursor cells remains unexplored. METHODS: A transgenic mouse model of RanGAP1 knockout of limb and head mesenchymal progenitor cells was constructed to explore the impact of RanGAP1 deletion on bone development by histomorphology and immunostaining. Subsequently, G-banding karyotyping analysis and immunofluorescence staining were used to examine the effects of RanGAP1 deficiency on chromosome instability. Finally, the effects of RanGAP1 deficiency on chromothripsis and bone development signaling pathways were elucidated by whole-genome sequencing, RNA-sequencing, and qPCR. RESULTS: The ablation of RanGAP1 in limb and head mesenchymal progenitor cells expressing Prx1 in mice resulted in embryonic lethality, severe cartilage and bone dysplasia, and complete loss of cranial vault formation. Moreover, RanGAP1 loss inhibited chondrogenic or osteogenic differentiation of mesenchymal stem cells (MSCs). Most importantly, we found that RanGAP1 loss in limb bud mesenchymal cells triggered missegregation of chromosomes, resulting in chromothripsis of chromosomes 1q and 14q, further inhibiting the expression of key genes involved in multiple bone development signaling pathways such as WNT, Hedgehog, TGF-beta/BMP, and PI3K/AKT in the chromothripsis regions, ultimately disrupting skeletal development. CONCLUSIONS: Our results establish RanGAP1 as a critical regulator of bone development, as it supports this process by preserving chromosome stability in Prx1-expressing limb bud mesenchymal cells.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

0 Expression