|  Help  |  About  |  Contact Us

Publication : Brain endoplasmic reticulum stress mechanistically distinguishes the saline-intake and hypertensive response to deoxycorticosterone acetate-salt.

First Author  Jo F Year  2015
Journal  Hypertension Volume  65
Issue  6 Pages  1341-8
PubMed ID  25895586 Mgi Jnum  J:283212
Mgi Id  MGI:6368312 Doi  10.1161/HYPERTENSIONAHA.115.05377
Citation  Jo F, et al. (2015) Brain endoplasmic reticulum stress mechanistically distinguishes the saline-intake and hypertensive response to deoxycorticosterone acetate-salt. Hypertension 65(6):1341-8
abstractText  Endoplasmic reticulum stress has become an important mechanism in hypertension. We examined the role of endoplasmic reticulum stress in mediating the increased saline-intake and hypertensive effects in response to deoxycorticosterone acetate (DOCA)-salt. Intracerebroventricular delivery of the endoplasmic reticulum stress-reducing chemical chaperone tauroursodeoxycholic acid did not affect the magnitude of hypertension, but markedly decreased saline-intake in response to DOCA-salt. Increased saline-intake returned after tauroursodeoxycholic acid was terminated. Decreased saline-intake was also observed after intracerebroventricular infusion of 4-phenylbutyrate, another chemical chaperone. Immunoreactivity to CCAAT homologous binding protein, a marker of irremediable endoplasmic reticulum stress, was increased in the subfornical organ and supraoptic nucleus of DOCA-salt mice, but the signal was absent in control and CCAAT homologous binding protein-deficient mice. Electron microscopy revealed abnormalities in endoplasmic reticulum structure (decrease in membrane length, swollen membranes, and decreased ribosome numbers) in the subfornical organ consistent with endoplasmic reticulum stress. Subfornical organ-targeted adenoviral delivery of GRP78, a resident endoplasmic reticulum chaperone, decreased DOCA-salt-induced saline-intake. The increase in saline-intake in response to DOCA-salt was blunted in CCAAT homologous binding protein-deficient mice, but these mice exhibited a normal hypertensive response. We conclude that (1) brain endoplasmic reticulum stress mediates the saline-intake, but not blood pressure response to DOCA-salt, (2) DOCA-salt causes endoplasmic reticulum stress in the subfornical organ, which when attenuated by GRP78 blunts saline-intake, and (3) CCAAT homologous binding protein may play a functional role in DOCA-salt-induced saline-intake. The results suggest a mechanistic distinction between the importance of endoplasmic reticulum stress in mediating effects of DOCA-salt on saline-intake and blood pressure.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression