First Author | Gortan Cappellari G | Year | 2016 |
Journal | Sci Rep | Volume | 6 |
Pages | 37965 | PubMed ID | 27897258 |
Mgi Jnum | J:287364 | Mgi Id | MGI:6407478 |
Doi | 10.1038/srep37965 | Citation | Gortan Cappellari G, et al. (2016) Lack of Fibronectin Extra Domain A Alternative Splicing Exacerbates Endothelial Dysfunction in Diabetes. Sci Rep 6:37965 |
abstractText | Glucose-induced changes of artery anatomy and function account for diabetic vascular complications, which heavily impact disease morbidity and mortality. Since fibronectin containing extra domain A (EDA + FN) is increased in diabetic vessels and participates to vascular remodeling, we wanted to elucidate whether and how EDA + FN is implicated in diabetes-induced endothelial dysfunction using isometric-tension recording in a murine model of diabetes. In thoracic aortas of EDA(-/-), EDA(+/+) (constitutively lacking and expressing EDA + FN respectively), and of wild-type mice (EDA(wt/wt)), streptozotocin (STZ)-induced diabetes impaired endothelial vasodilation to acetylcholine, irrespective of genotype. However STZ + EDA(-/-) mice exhibited increased endothelial dysfunction compared with STZ + EDA(+/+) and with STZ + EDA(wt/wt). Analysis of the underlying mechanisms revealed that STZ + EDA(-/-) mice show increased oxidative stress as demonstrated by enhanced aortic superoxide anion, nitrotyrosine levels and expression of NADPH oxidase NOX4 and TGF-beta1, the last two being reverted by treatment with the antioxidant n-acetylcysteine. In contrast, NOX1 expression and antioxidant potential were similar in aortas from the three genotypes. Interestingly, reduced eNOS expression in STZ + EDA(+/+) vessels is counteracted by increased eNOS coupling and function. Although EDA + FN participates to vascular remodelling, these findings show that it plays a crucial role in limiting diabetic endothelial dysfunction by preventing vascular oxidative stress. |