|  Help  |  About  |  Contact Us

Publication : Tumoral Vitamin D Synthesis by CYP27B1 1-α-Hydroxylase Delays Mammary Tumor Progression in the PyMT-MMTV Mouse Model and Its Action Involves NF-κB Modulation.

First Author  Li J Year  2016
Journal  Endocrinology Volume  157
Issue  6 Pages  2204-16
PubMed ID  27119753 Mgi Jnum  J:235383
Mgi Id  MGI:5796220 Doi  10.1210/en.2015-1824
Citation  Li J, et al. (2016) Tumoral Vitamin D Synthesis by CYP27B1 1-alpha-Hydroxylase Delays Mammary Tumor Progression in the PyMT-MMTV Mouse Model and Its Action Involves NF-kappaB Modulation. Endocrinology 157(6):2204-16
abstractText  Biologically active vitamin D (1,25-dihydroxycholecalciferol or 1,25(OH)2D) is synthetized from inactive prohormone 25-hydroxycholecalciferol (25(OH)D) by the enzyme CYP27B1 1-alpha-hydroxylase in kidney and several extrarenal tissues including breast. Although the development of breast cancer has been linked to inadequate vitamin D status, the importance of bioactive vitamin D production within tumors themselves is not fully understood. To investigate the role of tumoral vitamin D production in mammary epithelial cell progression to breast cancer, we conducted a Cre-loxP-mediated Cyp27b1 gene ablation in the mammary epithelium of the polyoma middle T antigen-mouse mammary tumor virus (PyMT-MMTV) mouse breast cancer model. Targeted ablation of Cyp27b1 was accompanied by significant acceleration in initiation of spontaneous mammary tumorigenesis. In vivo, cell proliferation, angiogenesis, cell cycle progression, and survival markers were up-regulated in tumors by Cyp27b1 ablation, and apoptosis was decreased. AK thymoma (AKT) phosphorylation and expression of several components of nuclear factor kappaB (NF-kappaB), integrin, and signal transducer and activator of transcription 3 (STAT3) signaling pathways were increased in Cyp27b1-ablated tumors compared with nonablated controls. In vitro, 1,25(OH)2D treatment induced a strong antiproliferative action on tumor cells from both ablated and nonablated mice, accompanied by rapid disappearance of NF-kappaB p65 from the nucleus and segregation in the cytoplasm. In contrast, treatment with the metabolic precursor 25(OH)D was only effective against cells from nonablated mice. 25(OH)D did not inhibit growth of Cyp27b1-ablated cells, and their nuclear NF-kappaB p65 remained abundant. Our findings demonstrate that in-tumor CYP27B1 1-alpha-hydroxylase activity plays a crucial role in controlling early oncogene-mediated mammary carcinogenesis events, at least in part by modulating tumoral cell NF-kappaB p65 nuclear translocation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

0 Expression