|  Help  |  About  |  Contact Us

Publication : Angiomotin regulates visceral endoderm movements during mouse embryogenesis.

First Author  Shimono A Year  2003
Journal  Curr Biol Volume  13
Issue  7 Pages  613-7
PubMed ID  12676095 Mgi Jnum  J:82844
Mgi Id  MGI:2655854 Doi  10.1016/s0960-9822(03)00204-5
Citation  Shimono A, et al. (2003) Angiomotin Regulates Visceral Endoderm Movements during Mouse Embryogenesis. Curr Biol 13(7):613-7
abstractText  In pregastrula stage mouse embryos, visceral endoderm (VE) migrates from a distal to anterior position to initiate anterior identity in the adjacent epiblast. This anterior visceral endoderm (AVE) is then displaced away from the epiblast by the definitive endoderm to become associated with the extra-embryonic ectoderm and subsequently contributes to the yolk sac. Little is known about the molecules that regulate this proximal displacement. Here we describe a role for mouse angiomotin (amot) in VE movements. amot expression is initially detected in the AVE and subsequently in the VE associated with the extra-embryonic ectoderm. Most amot mutant mice die soon after gastrulation with distinct furrows of VE located at the junction of the embryonic and extra-embryonic regions. Mutant analysis suggests that VE accumulation in these furrows is caused by defects in cell migration into proximal extra-embryonic regions, although distal-to-anterior movements associated with the epiblast, definitive endoderm formation, and anterior specification of the epiblast appear to be normal. These results suggest that amot acts within subregions of the VE to regulate morphogenetic movements that are required for embryo viability.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Authors

9 Bio Entities

0 Expression