|  Help  |  About  |  Contact Us

Publication : Lipocalin prostaglandin D synthase and PPARγ2 coordinate to regulate carbohydrate and lipid metabolism in vivo.

First Author  Virtue S Year  2012
Journal  PLoS One Volume  7
Issue  7 Pages  e39512
PubMed ID  22792179 Mgi Jnum  J:189517
Mgi Id  MGI:5446066 Doi  10.1371/journal.pone.0039512
Citation  Virtue S, et al. (2012) Lipocalin prostaglandin D synthase and PPARgamma2 coordinate to regulate carbohydrate and lipid metabolism in vivo. PLoS One 7(7):e39512
abstractText  Mice lacking Peroxisome Proliferator-Activated Receptor gamma2 (PPARgamma2) have unexpectedly normal glucose tolerance and mild insulin resistance. Mice lacking PPARgamma2 were found to have elevated levels of Lipocalin prostaglandin D synthase (L-PGDS) expression in BAT and subcutaneous white adipose tissue (WAT). To determine if induction of L-PGDS was compensating for a lack of PPARgamma2, we crossed L-PGDS KO mice to PPARgamma2 KO mice to generate Double Knock Out mice (DKO). Using DKO mice we demonstrated a requirement of L-PGDS for maintenance of subcutaneous WAT (scWAT) function. In scWAT, DKO mice had reduced expression of thermogenic genes, the de novo lipogenic program and the lipases ATGL and HSL. Despite the reduction in markers of lipolysis in scWAT, DKO mice had a normal metabolic rate and elevated serum FFA levels compared to L-PGDS KO alone. Analysis of intra-abdominal white adipose tissue (epididymal WAT) showed elevated expression of mRNA and protein markers of lipolysis in DKO mice, suggesting that DKO mice may become more reliant on intra-abdominal WAT to supply lipid for oxidation. This switch in depot utilisation from subcutaneous to epididymal white adipose tissue was associated with a worsening of whole organism metabolic function, with DKO mice being glucose intolerant, and having elevated serum triglyceride levels compared to any other genotype. Overall, L-PGDS and PPARgamma2 coordinate to regulate carbohydrate and lipid metabolism.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

0 Expression