First Author | Jones D | Year | 2010 |
Journal | Arterioscler Thromb Vasc Biol | Volume | 30 |
Issue | 12 | Pages | 2553-61 |
PubMed ID | 20864667 | Mgi Jnum | J:183147 |
Mgi Id | MGI:5317531 | Doi | 10.1161/ATVBAHA.110.214999 |
Citation | Jones D, et al. (2010) Functional analyses of the bone marrow kinase in the X chromosome in vascular endothelial growth factor-induced lymphangiogenesis. Arterioscler Thromb Vasc Biol 30(12):2553-61 |
abstractText | OBJECTIVE: The goal of this study was to investigate the novel hypothesis that bone marrow kinase in the X chromosome (Bmx), an established inflammatory mediator of pathological angiogenesis, promotes lymphangiogenesis. METHODS AND RESULTS: We have recently demonstrated a critical role for Bmx in inflammatory angiogenesis. However, the role of Bmx in lymphangiogenesis has not been investigated. Here, we show that in wild-type mice, Bmx is upregulated in lymphatic vessels in response to vascular endothelial growth factor (VEGF). In comparison with wild-type mice, Bmx-deficient mice mount weaker lymphangiogenic responses to VEGF-A and VEGF-C in 2 mouse models. In vitro, Bmx is expressed in cultured human dermal microvascular lymphatic endothelial cells. Furthermore, pharmacological inhibition and short interfering RNA mediated silencing of Bmx reduces VEGF-A and VEGF-C-induced signaling and lymphatic endothelial cell tube formation. Mechanistically, we demonstrated that Bmx differentially regulates VEGFR-2 and VEGFR-3 receptor signaling pathways: Bmx associates with and directly regulates VEGFR-2 activation, whereas Bmx associates with VEGFR-3 and regulates downstream signaling without an effect on the receptor autophosphorylation. CONCLUSIONS: Our in vivo and in vitro results provide the first insight into the mechanism by which Bmx mediates VEGF-dependent lymphangiogenic signaling. |