First Author | Gaur M | Year | 2001 |
Journal | Blood | Volume | 97 |
Issue | 6 | Pages | 1653-61 |
PubMed ID | 11238104 | Mgi Jnum | J:115585 |
Mgi Id | MGI:3691965 | Doi | 10.1182/blood.v97.6.1653 |
Citation | Gaur M, et al. (2001) Characterization of Mpl mutants using primary megakaryocyte-lineage cells from mpl(-/-) mice: a new system for Mpl structure-function studies. Blood 97(6):1653-61 |
abstractText | Mpl is the thrombopoietin (TPO) receptor. The current molecular understanding of how Mpl activation stimulates proliferation of megakaryocyte-lineage cells is based largely on the engineered expression of Mpl in nonmegakaryocyte-lineage cell lines. However, the relevance of these findings to Mpl signaling in primary megakaryocyte-lineage cells remains largely unknown. Therefore, a system was developed to study Mpl function in primary mpl(-/-) megakaryocyte-lineage cells. Expressing avian retroviral receptors on the surfaces of mammalian cells overcomes their natural block to avian retroviral infection; 815 bp of human GPIIb regulatory sequence was used to generate transgenic mice with megakaryocyte-lineage expression of the subgroup A avian leukosis virus receptor, TVA. Avian retroviral infection of unfractionated bone marrow from these mice is restricted to megakaryocyte-lineage cells. The transgenic mice were crossed to an mpl(-/-) background generating GPIIb-tva+mpl(-/-) mice. By using avian retroviruses to express wild-type or mutant Mpl on the surfaces of primary megakaryocyte-lineage cells, it was demonstrated that (1) the 10 membrane-proximal, cytoplasmic amino acids of Mpl are required for TPO-induced proliferation; (2) Y582F mutation confers a proliferative advantage over wild-type Mpl and imparts a constitutive anti-apoptotic signal; (3) truncating the 50 C-terminal Mpl amino acids reduces but does not eliminate TPO-induced mitogen-activated protein kinase activation, yet it does not alter the synergistic effect of stem cell factor on TPO-induced proliferation; and (4) TPO-induced proliferation of early, primary megakaryocyte-lineage cells does not require Stat-5 phosphorylation. The system reported provides an improved approach for Mpl structure-function studies, and the method can be applied to any hematopoietic lineage. |