|  Help  |  About  |  Contact Us

Publication : Targeting miR-34a/<i>Pdgfra</i> interactions partially corrects alveologenesis in experimental bronchopulmonary dysplasia.

First Author  Ruiz-Camp J Year  2019
Journal  EMBO Mol Med Volume  11
Issue  3 PubMed ID  30770339
Mgi Jnum  J:290538 Mgi Id  MGI:6443900
Doi  10.15252/emmm.201809448 Citation  Ruiz-Camp J, et al. (2019) Targeting miR-34a/Pdgfra interactions partially corrects alveologenesis in experimental bronchopulmonary dysplasia. EMBO Mol Med 11(3)
abstractText  Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth characterized by arrested lung alveolarization, which generates lungs that are incompetent for effective gas exchange. We report here deregulated expression of miR-34a in a hyperoxia-based mouse model of BPD, where miR-34a expression was markedly increased in platelet-derived growth factor receptor (PDGFR)alpha-expressing myofibroblasts, a cell type critical for proper lung alveolarization. Global deletion of miR-34a; and inducible, conditional deletion of miR-34a in PDGFRalpha(+) cells afforded partial protection to the developing lung against hyperoxia-induced perturbations to lung architecture. Pdgfra mRNA was identified as the relevant miR-34a target, and using a target site blocker in vivo, the miR-34a/Pdgfra interaction was validated as a causal actor in arrested lung development. An antimiR directed against miR-34a partially restored PDGFRalpha(+) myofibroblast abundance and improved lung alveolarization in newborn mice in an experimental BPD model. We present here the first identification of a pathology-relevant microRNA/mRNA target interaction in aberrant lung alveolarization and highlight the translational potential of targeting the miR-34a/Pdgfra interaction to manage arrested lung development associated with preterm birth.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

13 Bio Entities

0 Expression