First Author | Blyszczuk P | Year | 2013 |
Journal | Biochim Biophys Acta | Volume | 1833 |
Issue | 4 | Pages | 934-44 |
PubMed ID | 23103516 | Mgi Jnum | J:198869 |
Mgi Id | MGI:5499682 | Doi | 10.1016/j.bbamcr.2012.10.008 |
Citation | Blyszczuk P, et al. (2013) GM-CSF promotes inflammatory dendritic cell formation but does not contribute to disease progression in experimental autoimmune myocarditis. Biochim Biophys Acta 1833(4):934-44 |
abstractText | BACKGROUND: Granulocyte macrophage-colony stimulating factor (GM-CSF) is critically required for the induction of experimental autoimmune myocarditis (EAM), a model of post-inflammatory dilated cardiomyopathy. Its specific role in the progression of myocarditis into end stage heart failure is not known. METHODS AND RESULTS: BALB/c mice were immunized with myosin peptide and complete Freund's adjuvant at days 0 and 7. Heart-infiltrating inflammatory CD133(+) progenitors were isolated from inflamed hearts at the peak of inflammation (day 21). In the presence of GM-CSF, inflammatory CD133(+) progenitors up-regulated integrin, alpha X (CD11c), class II major histocompatibility complex, CD80 and CD86 co-stimulatory molecules reflecting an inflammatory dendritic cell (DC) phenotype. Inflammatory DCs stimulated antigen-specific CD4(+) T cell proliferation and induced myocarditis after myosin peptide loading and adoptive transfer in healthy mice. Moreover, GM-CSF treatment of mice after the peak of disease, between days 21 and 29 of EAM, transiently increased accumulation of inflammatory DCs in the myocardium. Importantly, bone marrow-derived CD11b(+) monocytes, rather than inflammatory CD133(+) progenitors represent the dominant cellular source of heart-infiltrating inflammatory DCs in EAM. In contrast, GM-CSF treatment neither affected numbers of heart-infiltrating CD45(+) and CD3(+) T cells nor the development of post-inflammatory fibrosis. CONCLUSIONS: GM-CSF treatment promotes formation of inflammatory DCs in EAM. In contrast to the active roles of GM-CSF and DCs in EAM induction, GM-CSF-induced inflammatory DCs neither prevent resolution of active inflammation, nor contribute to post-inflammatory cardiac remodelling. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction. |