First Author | Hirotani S | Year | 2007 |
Journal | Circ Res | Volume | 101 |
Issue | 11 | Pages | 1164-74 |
PubMed ID | 17901358 | Mgi Jnum | J:142787 |
Mgi Id | MGI:3822126 | Doi | 10.1161/CIRCRESAHA.107.160614 |
Citation | Hirotani S, et al. (2007) Inhibition of glycogen synthase kinase 3beta during heart failure is protective. Circ Res 101(11):1164-74 |
abstractText | Glycogen synthase kinase (GSK)-3, a negative regulator of cardiac hypertrophy, is inactivated in failing hearts. To examine the histopathological and functional consequence of the persistent inhibition of GSK-3beta in the heart in vivo, we generated transgenic mice with cardiac-specific overexpression of dominant negative GSK-3beta (Tg-GSK-3beta-DN) and tetracycline-regulatable wild-type GSK-3beta. GSK-3beta-DN significantly reduced the kinase activity of endogenous GSK-3beta, inhibited phosphorylation of eukaryotic translation initiation factor 2B epsilon, and induced accumulation of beta-catenin and myeloid cell leukemia-1, confirming that GSK-3beta-DN acts as a dominant negative in vivo. Tg-GSK-3beta-DN exhibited concentric hypertrophy at baseline, accompanied by upregulation of the alpha-myosin heavy chain gene and increases in cardiac function, as evidenced by a significantly greater Emax after dobutamine infusion and percentage of contraction in isolated cardiac myocytes, indicating that inhibition of GSK-3beta induces well-compensated hypertrophy. Although transverse aortic constriction induced a similar increase in hypertrophy in both Tg-GSK-3beta-DN and nontransgenic mice, Tg-GSK-3beta-DN exhibited better left ventricular function and less fibrosis and apoptosis than nontransgenic mice. Induction of the GSK-3beta transgene in tetracycline-regulatable wild-type GSK-3beta mice induced left ventricular dysfunction and premature death, accompanied by increases in apoptosis and fibrosis. Overexpression of GSK-3beta-DN in cardiac myocytes inhibited tumor necrosis factor-alpha-induced apoptosis, and the antiapoptotic effect of GSK-3beta-DN was abrogated in the absence of myeloid cell leukemia-1. These results suggest that persistent inhibition of GSK-3beta induces compensatory hypertrophy, inhibits apoptosis and fibrosis, and increases cardiac contractility and that the antiapoptotic effect of GSK-3beta inhibition is mediated by myeloid cell leukemia-1. Thus, downregulation of GSK-3beta during heart failure could be compensatory. |