| First Author | Bucci M | Year | 2012 |
| Journal | PLoS One | Volume | 7 |
| Issue | 12 | Pages | e53319 |
| PubMed ID | 23285278 | Mgi Jnum | J:195739 |
| Mgi Id | MGI:5485123 | Doi | 10.1371/journal.pone.0053319 |
| Citation | Bucci M, et al. (2012) cGMP-dependent protein kinase contributes to hydrogen sulfide-stimulated vasorelaxation. PLoS One 7(12):e53319 |
| abstractText | A growing body of evidence suggests that hydrogen sulfide (H(2)S) is a signaling molecule in mammalian cells. In the cardiovascular system, H(2)S enhances vasodilation and angiogenesis. H(2)S-induced vasodilation is hypothesized to occur through ATP-sensitive potassium channels (K(ATP)); however, we recently demonstrated that it also increases cGMP levels in tissues. Herein, we studied the involvement of cGMP-dependent protein kinase-I in H(2)S-induced vasorelaxation. The effect of H(2)S on vessel tone was studied in phenylephrine-contracted aortic rings with or without endothelium. cGMP levels were determined in cultured cells or isolated vessel by enzyme immunoassay. Pretreatment of aortic rings with sildenafil attenuated NaHS-induced relaxation, confirming previous findings that H(2)S is a phosphodiesterase inhibitor. In addition, vascular tissue levels of cGMP in cystathionine gamma lyase knockouts were lower than those in wild-type control mice. Treatment of aortic rings with NaHS, a fast releasing H(2)S donor, enhanced phosphorylation of vasodilator-stimulated phosphoprotein in a time-dependent manner, suggesting that cGMP-dependent protein kinase (PKG) is activated after exposure to H(2)S. Incubation of aortic rings with a PKG-I inhibitor (DT-2) attenuated NaHS-stimulated relaxation. Interestingly, vasodilatory responses to a slowly releasing H(2)S donor (GYY 4137) were unaffected by DT-2, suggesting that this donor dilates mouse aorta through PKG-independent pathways. Dilatory responses to NaHS and L-cysteine (a substrate for H(2)S production) were reduced in vessels of PKG-I knockout mice (PKG-I(-)/(-)). Moreover, glibenclamide inhibited NaHS-induced vasorelaxation in vessels from wild-type animals, but not PKG-I(-)/(-), suggesting that there is a cross-talk between K(ATP) and PKG. Our results confirm the role of cGMP in the vascular responses to NaHS and demonstrate that genetic deletion of PKG-I attenuates NaHS and L-cysteine-stimulated vasodilation. |