First Author | Takisawa S | Year | 2019 |
Journal | Sci Rep | Volume | 9 |
Issue | 1 | Pages | 4702 |
PubMed ID | 30894591 | Mgi Jnum | J:276658 |
Mgi Id | MGI:6307545 | Doi | 10.1038/s41598-019-41229-7 |
Citation | Takisawa S, et al. (2019) Vitamin C deficiency causes muscle atrophy and a deterioration in physical performance. Sci Rep 9(1):4702 |
abstractText | L-Ascorbic acid (AsA) is a water-soluble antioxidant. We examined the effect of AsA deficiency on skeletal muscle using senescence marker protein-30 (SMP30)-knockout (KO) mice that are defective in AsA biosynthesis, which makes this mouse model similar to humans, to clarify the function of AsA in skeletal muscle. Eight-week-old female SMP30-KO mice were divided into the following two groups: an AsA-sufficient group [AsA(+)] that was administered 1.5 g/L AsA and an AsA-deficient group [AsA(-)] that was administered tap (AsA-free) water. At 4 weeks, the AsA content in the gastrocnemius muscle of AsA(-) mice was 0.7% compared to that in the gastrocnemius muscle of AsA(+) mice. Significantly lower weights of all muscles were observed in AsA(-) mice than those in AsA(+) mice at 12 and 16 weeks. The cross-sectional area of the soleus was significantly smaller in AsA(-) mice at 16 weeks than that in AsA(+) mice. The physical performance of AsA(-) mice was significantly less than that of AsA(+) mice at 12 weeks. Following AsA deficiency for 12 weeks, the expression of ubiquitin ligases, such as atrogin1/muscle atrophy F-box (MAFbx) and muscle RING-finger protein 1 (MuRF1), was upregulated. Furthermore, all detected effects of AsA deficiency on muscles of the AsA(-) group at 12 weeks were restored following AsA supplementation for 12 weeks. Thus, longer-term AsA deficiency is associated with muscle wasting, that this can be reversed by restoring AsA levels. |