| First Author | Ramaswamy S | Year | 2009 |
| Journal | Neurobiol Dis | Volume | 34 |
| Issue | 1 | Pages | 40-50 |
| PubMed ID | 19150499 | Mgi Jnum | J:147305 |
| Mgi Id | MGI:3840045 | Doi | 10.1016/j.nbd.2008.12.005 |
| Citation | Ramaswamy S, et al. (2009) Intrastriatal CERE-120 (AAV-Neurturin) protects striatal and cortical neurons and delays motor deficits in a transgenic mouse model of Huntington's disease. Neurobiol Dis 34(1):40-50 |
| abstractText | Members of the GDNF family of ligands, including neurturin (NTN), have been implicated as potential therapeutic agents for Huntington's disease (HD). The present study examined the ability of CERE-120 (AAV2-NTN) to provide structural and functional protection in the N171-82Q transgenic HD mouse model. AAV2-NTN therapy attenuated rotorod deficits in this mutant relative to control treated transgenics (p<0.01). AAV2-NTN treatment significantly reduced the number of transgenic mice that exhibited clasping behavior and partially restored their stride lengths (both p<0.05). Stereological counts of NeuN-ir neurons revealed a significant neuroprotection in the striatum of AAV2-NTN treated relative to control treated transgenics (p<0.001). Most fascinating, stereological counts of NeuN-labeled cells in layers V-VI of prefrontal cortex revealed that intrastriatal AAV2-NTN administration prevented the loss of frontal cortical NeuN-ir neurons seen in transgenic mice (p<0.01). These data indicate that gene delivery of NTN may be a viable strategy for the treatment of this incurable disease. |