| First Author | Hikage F | Year | 2021 |
| Journal | Exp Cell Res | Volume | 403 |
| Issue | 1 | Pages | 112581 |
| PubMed ID | 33811906 | Mgi Jnum | J:311373 |
| Mgi Id | MGI:6706864 | Doi | 10.1016/j.yexcr.2021.112581 |
| Citation | Hikage F, et al. (2021) NF-kappaB activation in retinal microglia is involved in the inflammatory and neovascularization signaling in laser-induced choroidal neovascularization in mice. Exp Cell Res 403(1):112581 |
| abstractText | PURPOSE: To evaluate Nuclear Factor NF-kappaB (NF-kappaB) signaling on microglia activation, migration, and angiogenesis in laser-induced choroidal neovascularization (CNV). METHODS: Nine-week-old C57BL/6 male mice were randomly assigned to IMD-0354 treated or untreated groups (5 mice, 10 eyes per group). CNV was induced with a 532-nm laser. Laser spots (power 250 mW, spot size 100 mum, time of exposure 50 ms) were created in each eye using a slit-lamp delivery system. Selective inhibitor of nuclear factor kappa-B kinase subunit beta (IKK2) inhibitor IMD-0354 (10 mug) was delivered subconjunctivally; vehicle-treated mice were the control. The treatment effect on CNV development was assessed at five days post-CNV induction in vivo in C57BL/6 and Cx3cr1(gfp/wt) mice by fluorescent angiography, fundus imaging, and ex vivo by retinal flatmounts immunostaining and Western blot analysis of RPE/Choroidal/Scleral complexes (RCSC) lysates. In vitro evaluations of IMD-0354 effects were performed in the BV-2 microglial cell line using lipopolysaccharide (LPS) stimulation. RESULTS: IMD-0354 caused a significant reduction in the fluorescein leakage and size of the laser spot, as well as a reduction in microglial cell migration and suppression of phospho-IkappaBalpha, Vascular endothelial growth factor (VEGF-A), and Prostaglandin-endoperoxide synthase 2 (COX-2). In vivo and ex vivo observations demonstrated reduced lesion size in mice, CD68, and Allograft inflammatory factor 1 (IBA-1) positive microglia cells migration to the laser injury site in IMD-0354 treated eyes. The data further corroborate with GFP-positive cells infiltration of the CNV site in Cx3cr1(wt/gfp) mice. In vitro IMD-0354 (10-25 ng/ml) treatment reduced NF-kappaB activation, expression of COX-2, caused decreased Actin-F presence and organization, resulting in reduced BV-2 cells migration capacity. CONCLUSION: The present data indicate that NF-kappaB activation in microglia and it's migration capacity is involved in the development of laser CNV in mice. Its suppression by NF-kappaB inhibition might be a promising therapeutic strategy for wet AMD. |