|  Help  |  About  |  Contact Us

Publication : Single Cell ADNP Predictive of Human Muscle Disorders: Mouse Knockdown Results in Muscle Wasting.

First Author  Kapitansky O Year  2020
Journal  Cells Volume  9
Issue  10 PubMed ID  33086621
Mgi Jnum  J:325265 Mgi Id  MGI:6705482
Doi  10.3390/cells9102320 Citation  Kapitansky O, et al. (2020) Single Cell ADNP Predictive of Human Muscle Disorders: Mouse Knockdown Results in Muscle Wasting. Cells 9(10):2320
abstractText  Activity-dependent neuroprotective protein (ADNP) mutations are linked with cognitive dysfunctions characterizing the autistic-like ADNP syndrome patients, who also suffer from delayed motor maturation. We thus hypothesized that ADNP is deregulated in versatile myopathies and that local ADNP muscle deficiency results in myopathy, treatable by the ADNP fragment NAP. Here, single-cell transcriptomics identified ADNP as a major constituent of the developing human muscle. ADNP transcript concentrations further predicted multiple human muscle diseases, with concentrations negatively correlated with the ADNP target interacting protein, microtubule end protein 1 (EB1). Reverting back to modeling at the single-cell level of the male mouse transcriptome, Adnp mRNA concentrations age-dependently correlated with motor disease as well as with sexual maturation gene transcripts, while Adnp expressing limb muscle cells significantly decreased with aging. Mouse Adnp heterozygous deficiency exhibited muscle microtubule reduction and myosin light chain (Myl2) deregulation coupled with motor dysfunction. CRISPR knockdown of adult gastrocnemius muscle Adnp in a Cas9 mouse resulted in treadmill (male) and gait (female) dysfunctions that were specifically ameliorated by treatment with the ADNP snippet, microtubule interacting, Myl2-regulating, NAP (CP201). Taken together, our studies provide new hope for personalized diagnosis/therapeutics in versatile myopathies.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

0 Expression