|  Help  |  About  |  Contact Us

Publication : Ligand-activated peroxisome proliferator-activated receptor-δ and -γ inhibit lipopolysaccharide-primed release of high mobility group box 1 through upregulation of SIRT1.

First Author  Hwang JS Year  2014
Journal  Cell Death Dis Volume  5
Issue  10 Pages  e1432
PubMed ID  25275593 Mgi Jnum  J:357951
Mgi Id  MGI:6855655 Doi  10.1038/cddis.2014.406
Citation  Hwang JS, et al. (2014) Ligand-activated peroxisome proliferator-activated receptor-delta and -gamma inhibit lipopolysaccharide-primed release of high mobility group box 1 through upregulation of SIRT1. Cell Death Dis 5:e1432
abstractText  Peroxisome proliferator-activated receptors (PPARs) inhibit lipopolysaccharide (LPS)-primed release of high mobility group box 1 (HMGB1), a late proinflammatory mediator, but the underlying molecular mechanism is not completely understood. In this study, we demonstrated that the inhibition of HMGB1 release by PPAR-delta and -gamma is associated with the deacetylase activity of SIRT1. Ligand-activated PPAR-delta and -gamma inhibited LPS-primed release of HMGB1, concomitant with elevation in SIRT1 expression and promoter activity. These effects were significantly reduced in the presence of small interfering (si)RNAs against PPAR, indicating that PPAR-delta and -gamma are involved in both HMGB1 release and SIRT1 expression. In addition, modulation of SIRT1 expression and activity by siRNA or chemicals correspondingly influenced the effects of PPARs on HMGB1 release, suggesting a mechanism in which SIRT1 modulates HMGB1 release. Furthermore, we showed for the first time that HMGB1 acetylated in response to LPS or p300/CBP-associated factor (PCAF) is an effective substrate for SIRT1, and that deacetylation of HMGB1 is responsible for blockade of HMGB1 release in macrophages. Finally, acetylation of HMGB1 was elevated in mouse embryonic fibroblasts from SIRT1-knockout mice, whereas this increase was completely reversed by ectopic expression of SIRT1. These results indicate that PPAR-mediated upregulation of SIRT1 modulates the status of HMGB1 acetylation, which, in turn, has a critical role in the cellular response to inflammation through deacetylation-mediated regulation of HMGB1 release.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

0 Expression